Topological properties and optical conductivities tuned by spin-orbit coupling and strain in kagome lattices
被引:12
作者:
Zhao, Xiangyang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
Zhao, Xiangyang
[1
]
Wang, Zongtan
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Engn, Guangzhou 510006, Peoples R ChinaSun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
Wang, Zongtan
[2
]
Chen, Jiapeng
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R ChinaSun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
Chen, Jiapeng
[3
]
Wang, Biao
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R ChinaSun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
Wang, Biao
[1
,3
]
机构:
[1] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Engn, Guangzhou 510006, Peoples R China
[3] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China
The spin-orbit coupling (SOC) effect is the dominant origin of the topological properties in a topological insulator which can be induced and enhanced through various methods. Here we theoretically study the effects of varying SOC on the topological properties of two-dimensional kagome lattice based on the tight-binding approximation. We find that the system can undergo a transition between two non-trivial topological states by tuning the SOC strength. In addition, the topological phase transition can be achieved with a weaker SOC under a uniform tensile strain, which suggests that strain engineering can be used to regulate topological states. Besides, the characteristics of optical spin Hall conductivity are also studied, which supplies an experimental determination to reveal the different topological states. Furthermore, we propose an external mechanical strain modulated spin-switch device, which can generate opposite spin currents under stretch and compressed strain. Our results indicate that with the combination of SOC and strain, kagome lattice materials have potential applications on tunable spintronics and optoelectronic devices.
机构:
Harvard Univ, Dept Phys, Cambridge, MA 02138 USAHarvard Univ, Dept Phys, Cambridge, MA 02138 USA
Fang, Shiang
;
论文数: 引用数:
h-index:
机构:
Carr, Stephen
;
Cazalilla, Miguel A.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan
NCTS, Hsinchu 30013, Taiwan
DIPC, Manuel de Lardizabal 4, San Sebastian 20018, SpainHarvard Univ, Dept Phys, Cambridge, MA 02138 USA
Cazalilla, Miguel A.
;
Kaxiras, Efthimios
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USAHarvard Univ, Dept Phys, Cambridge, MA 02138 USA
机构:
Harvard Univ, Dept Phys, Cambridge, MA 02138 USAHarvard Univ, Dept Phys, Cambridge, MA 02138 USA
Fang, Shiang
;
论文数: 引用数:
h-index:
机构:
Carr, Stephen
;
Cazalilla, Miguel A.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan
NCTS, Hsinchu 30013, Taiwan
DIPC, Manuel de Lardizabal 4, San Sebastian 20018, SpainHarvard Univ, Dept Phys, Cambridge, MA 02138 USA
Cazalilla, Miguel A.
;
Kaxiras, Efthimios
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USAHarvard Univ, Dept Phys, Cambridge, MA 02138 USA