How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review

被引:134
作者
Ferreira, F. V. [1 ,2 ]
Dufresne, A. [3 ]
Pinheiro, I. F. [1 ]
Souza, D. H. S. [4 ]
Gouveia, R. F. [2 ]
Mei, L. H. I. [1 ]
Lona, L. M. F. [1 ]
机构
[1] Univ Campinas UNICAMP, Sch Chem Engn, BR-13083970 Campinas, SP, Brazil
[2] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Nanotechnol Natl Lab LNNano, Campinas, SP, Brazil
[3] Univ Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
[4] Univ Fed Rio De Janeiro UFRJ, Inst Macromol Prof Eloisa Mano IMA, Rio De Janeiro, RJ, Brazil
基金
巴西圣保罗研究基金会;
关键词
Cellulose nanocrystals; Biodegradable polymer nanocomposites; Rheological properties; Thermal properties; Mechanical properties; Biodegradation; FILM-FORMING SOLUTIONS; MECHANICAL-PROPERTIES; BARRIER PROPERTIES; CARBON NANOTUBES; SURFACE MODIFICATION; ASPECT-RATIO; POLY(BUTYLENE ADIPATE-CO-TEREPHTHALATE); POLYSACCHARIDE NANOCRYSTALS; BIONANOCOMPOSITE FILMS; REINFORCING EFFICIENCY;
D O I
10.1016/j.eurpolymj.2018.08.045
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Cellulose nanocrystals (CNCs) are considered as one of the most attractive renewable reinforcements for biodegradable polymers due to their promising properties and broad range of applications in several fields. However, the knowledge of CNCs effect on the overall properties of these CNC-based nanocomposites is not fully clarified. This review proposes a comprehensive understanding on the effect of CNCs on the rheological, thermal, mechanical, barrier and biodegradation properties of the main biodegradable polymers. This further understanding is expected to facilitate progress in various sectors of nanotechnology and materials science.
引用
收藏
页码:274 / 285
页数:12
相关论文
共 230 条
[11]   Nanocellulose in bio-based food packaging applications [J].
Azeredo, Henriette M. C. ;
Rosa, Morsyleide F. ;
Mattoso, Luiz Henrique C. .
INDUSTRIAL CROPS AND PRODUCTS, 2017, 97 :664-671
[12]   Degradability of poly(3-hydroxybutyrate) and its copolymer grafted with styrene by radiation [J].
Bahari, K ;
Mitoma, H ;
Enjoji, T ;
Yoshii, F ;
Makuuchi, K .
POLYMER DEGRADATION AND STABILITY, 1998, 61 (02) :245-252
[13]  
Bahari L, 1998, POLYM DEGRAD STABIL, V62, P551
[14]   A technique for production of nanocrystalline cellulose with a narrow size distribution [J].
Bai, Wen ;
Holbery, James ;
Li, Kaichang .
CELLULOSE, 2009, 16 (03) :455-465
[15]   EFFECT OF BROWNIAN-MOTION ON BULK STRESS IN A SUSPENSION OF SPHERICAL-PARTICLES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1977, 83 (NOV) :97-117
[16]   Simple Method for the Melt Extrusion of a Cellulose Nanocrystal Reinforced Hydrophobic Polymer [J].
Ben Azouz, Kaouther ;
Ramires, Elaine C. ;
Van den Fonteyne, Winke ;
El Kissi, Nadia ;
Dufresne, Alain .
ACS MACRO LETTERS, 2012, 1 (01) :236-240
[17]  
Bhatia A, 2007, KOREA-AUST RHEOL J, V19, P125
[18]   Nano-biocomposites: Biodegradable polyester/nanoclay systems [J].
Bordes, Perrine ;
Pollet, Eric ;
Averous, Luc .
PROGRESS IN POLYMER SCIENCE, 2009, 34 (02) :125-155
[19]   Correlation between water absorption and mechanical properties of polyamide 6 filled with layered double hydroxides (LDH) [J].
Botan, R. ;
Pinheiro, I. F. ;
Ferreira, F., V ;
Lona, L. M. F. .
MATERIALS RESEARCH EXPRESS, 2018, 5 (06)
[20]   Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s [J].
Bouapao, Leevameng ;
Tsuji, Hideto ;
Tashiro, Kohji ;
Zhang, Jianming ;
Hanesaka, Makoto .
POLYMER, 2009, 50 (16) :4007-4017