Existence of seamount steady vortex flows

被引:1
作者
Emamizadeh, B
Bahrami, F
机构
[1] Tarbiat Modares Univ, Dept Math, Tehran, Iran
[2] Petr Inst, Dept Math, Abu Dhabi, U Arab Emirates
关键词
D O I
10.1017/S1446181100009780
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we will study a feature of a localised topographic flow. We will prove existence of an ideal fluid containing a bounded vortex, approaching a uniform flow at infinity and passing over a localised seamount. The domain of the fluid is the upper half-plane and the data prescribed is the rearrangement class of the vorticity field.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 14 条
[1]  
Adams R., 1975, PURE APPL MATH, V65
[2]  
Benjamin T. B., 1976, LECT NOTES MATH, V503, P8
[3]   REARRANGEMENTS OF FUNCTIONS, MAXIMIZATION OF CONVEX FUNCTIONALS, AND VORTEX RINGS [J].
BURTON, GR .
MATHEMATISCHE ANNALEN, 1987, 276 (02) :225-253
[4]   A constrained variational problem for steady vortices in a shear flow [J].
Burton, GR ;
Emamizadeh, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1341-1365
[6]   Steady vortex in a uniform shear flow of an ideal fluid [J].
Emamizadeh, B .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 :801-812
[7]   Steady vortex flows obtained from an inverse problem [J].
Emamizadeh, B ;
Bahrami, F .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (02) :213-226
[8]  
EMAMIZADEH B, 2001, J SCI-ISLAM REPUB IR, V12, P57
[9]  
EMAMIZADEH B, 2002, INT J MATH MATH SCI, V30, P283
[10]  
GILBARG D, 1992, ELLIPTIC PARTIAL DIF