Subgroup congruences for groups of prime power order

被引:0
作者
Aivazidis, Stefanos [1 ]
Loukaki, Maria [1 ]
机构
[1] Univ Crete, Dept Math & Appl Math, Voutes Campus, Iraklion 70013, Greece
关键词
Finite p-groups; Subgroup counting; Abelian p-groups; ABELIAN SUBGROUPS; P-GROUPS;
D O I
10.1016/j.jalgebra.2022.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a p-group G and a subgroup-closed class X, we associate with each X-subgroup H certain quantities which count X- subgroups containing H subject to further properties. We show in Theorem I that each one of the said quantities is always equivalent to 1 (mod p) if and only if the same holds for the others. In Theorem II we supplement the above result by focusing on normal X-subgroups and in Theorem III we obtain a sharpened version of a celebrated theorem of Burnside relative to the class of abelian groups of bounded exponent. Various other corollaries are also presented and some open questions are posed. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:818 / 830
页数:13
相关论文
共 11 条
[1]  
Alperin J.L., 1964, J ALGEBRA, V1, P110
[2]  
Berkovich Y, 2008, DEGRUYTER EXPOS MATH, V46, P1, DOI 10.1515/9783110208221
[3]   On Abelian subgroups of p-groups [J].
Berkovich, Y .
JOURNAL OF ALGEBRA, 1998, 199 (01) :262-280
[4]   Existence of normal subgroups in finite p-groups [J].
Glauberman, George .
JOURNAL OF ALGEBRA, 2008, 319 (02) :800-805
[5]   p-Groups with maximal elementary abelian subgroups of rank 2 [J].
Glauberman, George ;
Mazza, Nadia .
JOURNAL OF ALGEBRA, 2010, 323 (06) :1729-1737
[6]  
Huppert B., 1967, ENDLICHE GRUPPEN, V134
[7]   Counting maximal abelian subgroups of p-groups [J].
Isaacs, I. M. ;
Yanovski, Lior .
ARCHIV DER MATHEMATIK, 2022, 119 (01) :1-9
[8]   MOBIUS FUNCTION IN FINITE-GROUP AND BURNSIDE RINGS [J].
KRATZER, C ;
THEVENAZ, J .
COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (03) :425-438
[9]  
LAFFEY TJ, 1980, P ROY IRISH ACAD A, V80, P131
[10]  
LAFFEY TJ, 1974, P CAMB PHILOS SOC, V75, P133