Investigation of the Microstructure Evolution in a Fe-17Mn-1.5Al-0.3C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test

被引:39
作者
Ma, Yan [1 ]
Song, Wenwen [1 ]
Bleck, Wolfgang [1 ]
机构
[1] Rhein Westfal TH Aachen, Steel Inst, Intzestr 1, D-52072 Aachen, Germany
关键词
high-Mn steel; TRIP effect; TWIP effect; strain-hardening behavior; synchrotron X-ray diffraction; stacking fault energy; mechanical properties; microstructure; STACKING-FAULT ENERGY; STRAIN-HARDENING BEHAVIOR; AUSTENITIC STEELS; HIGH-STRENGTH; TRIP/TWIP STEELS; TWIP STEEL; PHASE-TRANSFORMATION; INDUCED PLASTICITY; STAINLESS-STEEL; MN;
D O I
10.3390/ma10101129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levelsin terms of epsilon-martensite and '-martensite volume fractions, the stacking fault probability, and the twin fault probabilitywas analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from epsilon-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic '-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE.
引用
收藏
页数:16
相关论文
共 53 条
[1]   Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins [J].
Asgari, S ;
ElDanaf, E ;
Kalidindi, SR ;
Doherty, RD .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1997, 28 (09) :1781-1795
[2]   High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels [J].
Blonde, R. ;
Jimenez-Melero, E. ;
Zhao, L. ;
Wright, J. P. ;
Bruck, E. ;
van der Zwaag, S. ;
van Dijk, N. H. .
ACTA MATERIALIA, 2012, 60 (02) :565-577
[3]   Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels [J].
Bouaziz, O. ;
Allain, S. ;
Scott, C. .
SCRIPTA MATERIALIA, 2008, 58 (06) :484-487
[4]   Nanostructured steel with high work-hardening by the exploitation of the thermal stability of mechanically induced twins [J].
Bouaziz, O. ;
Scott, C. P. ;
Petitgand, G. .
SCRIPTA MATERIALIA, 2009, 60 (08) :714-716
[5]   DIRECT OBSERVATIONS OF MARTENSITE NUCLEI IN STAINLESS-STEEL [J].
BROOKS, JW ;
LORETTO, MH ;
SMALLMAN, RE .
ACTA METALLURGICA, 1979, 27 (12) :1839-1847
[6]  
Brüx U, 2002, STEEL RES, V73, P294
[7]   A synchrotron X-ray diffraction study on the phase transformation kinetics and texture evolution of a TRIP steel subjected to torsional loading [J].
Cakmak, Ercan ;
Choo, Hahn ;
An, Ke ;
Ren, Yang .
ACTA MATERIALIA, 2012, 60 (19) :6703-6713
[8]  
Carmele D., 2011, ADV MAT RES, V409, P660, DOI [10.4028/www.scientific.net/AMR.409.660, DOI 10.4028/WWW.SCIENTIFIC.NET/AMR.409.660]
[9]   State-of-the-knowledge on TWIP steel [J].
De Cooman, B. C. ;
Kwon, O. ;
Chin, K. -G. .
MATERIALS SCIENCE AND TECHNOLOGY, 2012, 28 (05) :513-527
[10]   Strain hardening behavior of a TRIP/TWIP steel with 18.8% Mn [J].
Ding, Hao ;
Ding, Hua ;
Song, Dan ;
Tang, Zhengyou ;
Yang, Ping .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (03) :868-873