Sub-60 mV/decade switching in 2D negative capacitance field-effect transistors with integrated ferroelectric polymer

被引:122
作者
McGuire, Felicia A. [1 ]
Cheng, Zhihui [1 ]
Price, Katherine [1 ]
Franklin, Aaron D. [1 ,2 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[2] Duke Univ, Dept Chem, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
2-DIMENSIONAL MATERIALS; VOLTAGE AMPLIFICATION; MOS2; TRANSITION; FILMS;
D O I
10.1063/1.4961108
中图分类号
O59 [应用物理学];
学科分类号
摘要
There is a rising interest in employing the negative capacitance (NC) effect to achieve sub-60 mV/decade (below the thermal limit) switching in field-effect transistors (FETs). The NC effect, which is an effectual amplification of the applied gate potential, is realized by incorporating a ferroelectric material in series with a dielectric in the gate stack of a FET. One of the leading challenges to such NC-FETs is the variable substrate capacitance exhibited in 3D semiconductor channels (bulk, Fin, or nanowire) that minimizes the extent of sub-60 mV/decade switching. In this work, we demonstrate 2D NC-FETs that combine the NC effect with 2D MoS2 channels to extend the steep switching behavior. Using the ferroelectric polymer, poly(vinylidene difluoride-trifluoroethylene) (P(VDF-TrFE)), these 2D NC-FETs are fabricated by modification of top-gated 2D FETs through the integrated addition of P(VDF-TrFE) into the gate stack. The impact of including an interfacial metal between the ferroelectric and dielectric is studied and shown to be critical. These 2D NC-FETs exhibit a decrease in subthreshold swing from 113 mV/decade down to 11.7 mV/decade at room temperature with sub-60 mV/decade switching occurring over more than 4 decades of current. The P(VDF-TrFE) proves to be an unstable option for a device technology, yet the superb switching behavior observed herein opens the way for further exploration of nanomaterials for extremely low-voltage NC-FETs. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
[21]   Impacts of HfZrO thickness and anneal temperature on performance of MoS2 negative-capacitance field-effect transistors [J].
Tao, Xinge ;
Liu, Lu ;
Yang, Lei ;
Xu, Jing-Ping .
NANOTECHNOLOGY, 2021, 32 (44)
[22]   Device and Circuit Level Gate Configuration Optimization for 2D Material Field-Effect Transistors [J].
Verreck, Devin ;
Arutchelvan, Goutham ;
Heyns, Marc M. ;
Radu, Iuliana P. .
2019 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD 2019), 2019, :283-286
[23]   Ultrathin Van der Waals Lanthanum Oxychloride Dielectric for 2D Field-Effect Transistors [J].
Li, Linyang ;
Dang, Weiqi ;
Zhu, Xiaofei ;
Lan, Haihui ;
Ding, Yiran ;
Li, Zhu-An ;
Wang, Luyang ;
Yang, Yuekun ;
Fu, Lei ;
Miao, Feng ;
Zeng, Mengqi .
ADVANCED MATERIALS, 2025, 37 (31)
[24]   Optimization of Subthreshold Swing and Hysteresis in Hf0.5Zr0.5O2-Based MoS2 Negative Capacitance Field-Effect Transistors by Modulating Capacitance Matching [J].
Guo, Xiaowei ;
Wang, Fang ;
Ma, Zexia ;
Shan, Xin ;
Lin, Xin ;
Ji, Yujing ;
Zhao, Xuanyu ;
Feng, Yulin ;
Han, Yemei ;
Xie, Yangyang ;
Song, Zhitang ;
Zhang, Kailiang .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (26) :31617-31626
[25]   Role of metal contacts and effect of annealing in high performance 2D WSe2 field-effect transistors [J].
Bandyopadhyay, Avra S. ;
Saenz, Gustavo A. ;
Kaul, Anupama B. .
SURFACE & COATINGS TECHNOLOGY, 2020, 381
[26]   5 nm Ultrathin Crystalline Ferroelectric P(VDF-TrFE)-Brush Tuned for Hysteresis-Free Sub 60 mV dec-1 Negative-Capacitance Transistors [J].
Cho, Hyunmin ;
Jin, Hye-Jin ;
Lee, Sol ;
Jeon, Seungbae ;
Cho, Yongjae ;
Park, Sam ;
Jang, Myeongjin ;
Widiapradja, Livia Janice ;
Ryu, Du Yeol ;
Park, Ji Hoon ;
Kim, Kwanpyo ;
Im, Seongil .
ADVANCED MATERIALS, 2023, 35 (22)
[27]   Directly writing 2D organic semiconducting crystals for high-performance field-effect transistors [J].
Zhang, Yujia ;
Guo, Yu ;
Song, Lei ;
Qian, Jun ;
Jiang, Sai ;
Wang, Qijing ;
Wang, Xinran ;
Shi, Yi ;
Wang, Xiaomu ;
Li, Yun .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (43) :11246-11251
[28]   Interfacial Engineering for Fabricating High-Performance Field-Effect Transistors Based on 2D Materials [J].
Gao, Feng ;
Yang, Huihui ;
Hu, PingAn .
SMALL METHODS, 2018, 2 (06)
[29]   Environmental Analysis with 2D Transition-Metal Dichalcogenide-Based Field-Effect Transistors [J].
Chen, Xiaoyan ;
Liu, Chengbin ;
Mao, Shun .
NANO-MICRO LETTERS, 2020, 12 (01)
[30]   Ternary VOCl single-crystal as efficient gate dielectric for 2D field-effect transistors [J].
Zhu, W. ;
Cui, Q. ;
Adam, M. L. ;
Liu, Z. ;
Zhang, L. ;
Dai, Z. ;
Yin, Y. ;
Chen, S. ;
Song, L. .
2D MATERIALS, 2021, 8 (02)