Theoretical modeling of XBn T2SLs InAs/InAsSb/B-AlSb longwave infrared detector operating under thermoelectrical cooling

被引:3
作者
Martyniuk, P. [1 ]
Michalczewski, K. [1 ]
Tsai, T. Y. [2 ]
Wu, C. H. [2 ]
Wu, Y. R. [2 ]
机构
[1] Mil Univ Technol, Inst Appl Phys, 2 Kaliskiego Str, PL-00908 Warsaw, Poland
[2] Natl Taiwan Univ, Grad Inst Photon & Optoelect, Roosevelt Rd, Taipei 10617, Taiwan
关键词
LWIR; T2SLs InAs; InAsSb; Barrier detector; SUPERLATTICE DETECTORS; INAS/GASB;
D O I
10.1007/s11082-019-2159-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper reports on the barrier longwave infrared nBnn(+) detector based on InAs/InAsSb (x(Sb)=0.38) type-II superlattice operating under thermoelectrical cooling (>190 K). That active layer exhibits cut-off wavelength10 mu m at 230 K. AlSb was proved to minimize barrier in valence band in analysed temperature range and assumed architecture. The highest detectivity of the simulated structure was assessed at the level of10(9) cm Hz(1/2)/W at T230 K assuming immersion contribution. The barrier detector performance was compared to HgCdTe detectors with10.6 mu m cut-off wavelength at 230 K and13 mu m cut-off wavelength at 195 K.
引用
收藏
页数:10
相关论文
共 24 条
[1]   Selected optoelectronic sensors in medical applications [J].
Bielecki, Z. ;
Stacewicz, T. ;
Wojtas, J. ;
Mikolajczyk, J. ;
Szabra, D. ;
Prokopiuk, A. .
OPTO-ELECTRONICS REVIEW, 2018, 26 (02) :122-133
[2]  
Casias L.K, 2019, THESIS
[3]   Recombination Processes in InAs/InAsSb Type II Strained Layer Superlattice MWIR nBn Detectors [J].
DeWames, R. E. ;
Schuster, J. ;
DeCuir, E. A., Jr. ;
Dhar, N. K. .
INFRARED TECHNOLOGY AND APPLICATIONS XLV, 2019, 11002
[4]   InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection [J].
Haddadi, A. ;
Chen, G. ;
Chevalier, R. ;
Hoang, A. M. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2014, 105 (12)
[5]   Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices [J].
Hoeglund, L. ;
Ting, D. Z. ;
Khoshakhlagh, A. ;
Soibel, A. ;
Hill, C. J. ;
Fisher, A. ;
Keo, S. ;
Gunapala, S. D. .
APPLIED PHYSICS LETTERS, 2013, 103 (22)
[6]   Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices [J].
Kim, H. S. ;
Cellek, O. O. ;
Lin, Zhi-Yuan ;
He, Zhao-Yu ;
Zhao, Xin-Hao ;
Liu, Shi ;
Li, H. ;
Zhang, Y. -H. .
APPLIED PHYSICS LETTERS, 2012, 101 (16)
[7]   Modeling InAs/GaSb and InAs/InAsSb Superlattice Infrared Detectors [J].
Klipstein, P. C. ;
Livneh, Y. ;
Glozman, A. ;
Grossman, S. ;
Klin, O. ;
Snapi, N. ;
Weiss, E. .
JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (08) :2984-2990
[8]  
Klipstein P.C., 2019, 2019 US WORKSH PHYS
[9]   InAs/InAsSb strain balanced superlattices for optical detectors: Material properties and energy band simulations [J].
Lackner, D. ;
Steger, M. ;
Thewalt, M. L. W. ;
Pitts, O. J. ;
Cherng, Y. T. ;
Watkins, S. P. ;
Plis, E. ;
Krishna, S. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (03)
[10]   nBn detector, an infrared detector with reduced dark current and higher operating temperature [J].
Maimon, S. ;
Wicks, G. W. .
APPLIED PHYSICS LETTERS, 2006, 89 (15)