Chemputation and the Standardization of Chemical Informatics

被引:53
作者
Hammer, Alexander J. S. [1 ]
Leonov, Artem, I [1 ]
Bell, Nicola L. [1 ]
Cronin, Leroy [1 ]
机构
[1] Univ Glasgow, Sch Chem, Glasgow G12 8QQ, Lanark, Scotland
来源
JACS AU | 2021年 / 1卷 / 10期
基金
英国工程与自然科学研究理事会;
关键词
Automated Synthesis; Chemical Informatics; Digital Chemistry; Data Standards; Reaction Optimization; ORGANIC-SYNTHESIS; AUTOMATED SYNTHESIS; FLOW CHEMISTRY; 3D-PRINTED REACTIONWARE; MICROREACTOR SYSTEM; RAPID OPTIMIZATION; SELF-OPTIMIZATION; MASS-SPECTROMETRY; BENCHTOP NMR; DIGITIZATION;
D O I
10.1021/jacsau.1c00303
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The explosion in the use of machine learning for automated chemical reaction optimization is gathering pace. However, the lack of a standard architecture that connects the concept of chemical transformations universally to software and hardware provides a barrier to using the results of these optimizations and could cause the loss of relevant data and prevent reactions from being reproducible or unexpected findings verifiable or explainable. In this Perspective, we describe how the development of the field of digital chemistry or chemputation, that is the universal code-enabled control of chemical reactions using a standard language and ontology, will remove these barriers allowing users to focus on the chemistry and plug in algorithms according to the problem space to be explored or unit function to be optimized. We describe a standard hardware (the chemical processing programming architecture.the ChemPU) to encompass all chemical synthesis, an approach which unifies all chemistry automation strategies, from solid-phase peptide synthesis, to HTE flow chemistry platforms, while at the same time establishing a publication standard so that researchers can exchange chemical code (chi DL) to ensure reproducibility and interoperability. Not only can a vast range of different chemistries be plugged into the hardware, but the ever-expanding developments in software and algorithms can also be accommodated. These technologies, when combined will allow chemistry, or chemputation, to follow computation.that is the running of code across many different types of capable hardware to get the same result every time with a low error rate.
引用
收藏
页码:1572 / 1587
页数:16
相关论文
共 150 条
[1]   On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system [J].
Adamo, Andrea ;
Beingessner, Rachel L. ;
Behnam, Mohsen ;
Chen, Jie ;
Jamison, Timothy F. ;
Jensen, Klavs F. ;
Monbaliu, Jean-Christophe M. ;
Myerson, Allan S. ;
Revalor, Eve M. ;
Snead, David R. ;
Stelzer, Torsten ;
Weeranoppanant, Nopphon ;
Wong, Shin Yee ;
Zhang, Ping .
SCIENCE, 2016, 352 (6281) :61-67
[2]   Predicting reaction performance in C-N cross-coupling using machine learning [J].
Ahneman, Derek T. ;
Estrada, Jesus G. ;
Lin, Shishi ;
Dreher, Spencer D. ;
Doyle, Abigail G. .
SCIENCE, 2018, 360 (6385) :186-190
[3]   AUTOMATED SYNTHESIS OF GENE FRAGMENTS [J].
ALVARADOURBINA, G ;
SATHE, GM ;
LIU, WC ;
GILLEN, MF ;
DUCK, PD ;
BENDER, R ;
OGILVIE, KK .
SCIENCE, 1981, 214 (4518) :270-274
[4]   Multi-component background learning automates signal detection for spectroscopic data [J].
Ament, Sebastian E. ;
Stein, Helge S. ;
Guevarra, Dan ;
Zhou, Lan ;
Haber, Joel A. ;
Boyd, David A. ;
Umehara, Mitsutaro ;
Gregoire, John M. ;
Gomes, Carla P. .
NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
[5]   Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine [J].
Angelone, Davide ;
Hammer, Alexander J. S. ;
Rohrbach, Simon ;
Krambeck, Stefanie ;
Granda, Jaroslaw M. ;
Wolf, Jakob ;
Zalesskiy, Sergey ;
Chisholm, Greig ;
Cronin, Leroy .
NATURE CHEMISTRY, 2021, 13 (01) :63-+
[6]  
[Anonymous], 2010, MATLAB VER 7100 R201
[7]  
Aspuru-Guzik A, ARXIV
[8]   SiLA: Basic Standards for Rapid Integration in Laboratory Automation [J].
Baer, Henning ;
Hochstrasser, Remo ;
Papenfuss, Bernd .
JALA, 2012, 17 (02) :86-95
[9]   Optimum catalyst selection over continuous and discrete process variables with a single droplet microfluidic reaction platform [J].
Baumgartner, Lorenz M. ;
Coley, Connor W. ;
Reizman, Brandon J. ;
Gao, Kevin W. ;
Jensen, Klavs F. .
REACTION CHEMISTRY & ENGINEERING, 2018, 3 (03) :301-311
[10]   Reconfigurable system for automated optimization of diverse chemical reactions [J].
Bedard, Anne-Catherine ;
Adamo, Andrea ;
Aroh, Kosi C. ;
Russell, M. Grace ;
Bedermann, Aaron A. ;
Torosian, Jeremy ;
Yue, Brian ;
Jensen, Klavs F. ;
Jamison, Timothy F. .
SCIENCE, 2018, 361 (6408) :1220-+