A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries

被引:39
作者
Zhang, Huimin [1 ]
Zhao, Siwei [1 ]
Huang, Fuqiang [1 ,2 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
SOLID-ELECTROLYTE-INTERPHASE; NITROGEN-DOPED GRAPHENE; GRAPHITE-INTERCALATION COMPOUNDS; ETHER-BASED ELECTROLYTE; X-RAY-SCATTERING; LITHIUM-ION; HARD-CARBON; NA-ION; HIGH-CAPACITY; POROUS CARBON;
D O I
10.1039/d1ta07962j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Since the commercialization of the graphite anode by Sony in 1991, extensive research findings have demonstrated that carbon-based materials are promising candidates for lithium-ion batteries (LIBs) and "post lithium-ion batteries," sodium-ion batteries (SIBs)/potassium-ion batteries (PIBs). These three alkali-ion batteries consist of similar components and electrochemical reaction mechanisms in carbon materials, while some significant difference proved to exist in their electrochemical storage behaviors. This review presents a comprehensive comparison of Li+/Na+/K+ storage behavior in carbon anode materials (graphite, graphene, soft carbon and hard carbon) in view of the possible storage mechanism and favorable strategies to enhance their electrochemical performance. Hence, a better understanding of the relationship between the structure, charge storage mechanism and electrochemical behavior of carbon materials is provided. Finally, critical issues and perspectives are discussed to demonstrate prospective research directions for carbon anode materials in these alkali metal-ion batteries.
引用
收藏
页码:27140 / 27169
页数:30
相关论文
共 240 条
  • [1] Carbon Anodes for Nonaqueous Alkali Metal-Ion Batteries and Their Thermal Safety Aspects
    Adams, Ryan A.
    Varma, Arvind
    Pol, Vilas G.
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (35)
  • [2] EPR, NMR, and electrochemical studies of surface-modified carbon microbeads
    Alcántara, R
    Ortiz, GF
    Lavela, P
    Tirado, JL
    [J]. CHEMISTRY OF MATERIALS, 2006, 18 (09) : 2293 - 2301
  • [3] Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000°C
    Alcántara, R
    Mateos, JMJ
    Tirado, JL
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (02) : A201 - A205
  • [4] Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries
    Aurbach, D
    [J]. JOURNAL OF POWER SOURCES, 2000, 89 (02) : 206 - 218
  • [5] Elucidation of the Sodium-Storage Mechanism in Hard Carbons
    Bai, Panxing
    He, Yongwu
    Zou, Xiaoxi
    Zhao, Xinxin
    Xiong, Peixun
    Xu, Yunhua
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (15)
  • [6] Long cycle life and high rate sodium-ion chemistry for hard carbon anodes
    Bai, Panxing
    He, Yongwu
    Xiong, Peixun
    Zhao, Xinxin
    Xu, Kang
    Xu, Yunhua
    [J]. ENERGY STORAGE MATERIALS, 2018, 13 : 274 - 282
  • [7] Hard Carbon Originated from Polyvinyl Chloride Nanofibers As High-Performance Anode Material for Na-Ion Battery
    Bai, Ying
    Wang, Zhen
    Wu, Chuan
    Xu, Rui
    Wu, Feng
    Liu, Yuanchang
    Li, Hui
    Li, Yu
    Lu, Jun
    Amine, Khalil
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (09) : 5598 - 5604
  • [8] Structural Engineering of Multishelled Hollow Carbon Nanostructures for High-Performance Na-Ion Battery Anode
    Bin, De-Shan
    Li, Yunming
    Sun, Yong-Gang
    Duan, Shu-Yi
    Lu, Yaxiang
    Ma, Jianmin
    Cao, An-Min
    Hu, Yong-Sheng
    Wan, Li-Jun
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (26)
  • [9] New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon
    Bommier, Clement
    Surta, Todd Wesley
    Dolgos, Michelle
    Ji, Xiulei
    [J]. NANO LETTERS, 2015, 15 (09) : 5888 - 5892
  • [10] Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage
    Bonaccorso, Francesco
    Colombo, Luigi
    Yu, Guihua
    Stoller, Meryl
    Tozzini, Valentina
    Ferrari, Andrea C.
    Ruoff, Rodney S.
    Pellegrini, Vittorio
    [J]. SCIENCE, 2015, 347 (6217)