Training an End-to-End Model for Offline Handwritten Japanese Text Recognition by Generated Synthetic Patterns

被引:19
作者
Nam Tuan Ly [1 ]
Cuong Tuan Nguyen [1 ]
Nakagawa, Masaki [1 ]
机构
[1] Tokyo Univ Agr & Technol, Dept Comp & Informat Sci, 2-24-16 Naka Cho, Koganei, Tokyo 1848588, Japan
来源
PROCEEDINGS 2018 16TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR) | 2018年
关键词
Handwritten Japanese Text Recognition; End-to-End Model; CNN; BLSTM; Synthetic Image Generation;
D O I
10.1109/ICFHR-2018.2018.00022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an end-to-end model of Deep Convolutional Recurrent Network (DCRN) for recognizing offline handwritten Japanese text lines. The end-to-end DCRN model has three parts: a convolutional feature extractor using Deep Convolutional Neural Network (DCNN) to extract a feature sequence from a text line image; recurrent layers employing a Deep Bidirectional LSTM to predict pre-frame from the feature sequence; and a transcription layer using Connectionist Temporal Classification (CTC) to convert the pre-frame predictions into the label sequence. Since our end-to-end model requires a large data for training, we synthesize handwritten text line images from sentences in corpora and handwritten character patterns in the Nakayosi and Kuchibue database with elastic distortions. In the experiment, we evaluate the performance of the end-to-end model and the effectiveness of the synthetic data generation method on the test set of the TUAT Kondate database. The results of the experiments show that our end-to-end model achieves higher than the state-of-the-art recognition accuracy on the test set of TUAT Kondate with 96.35% and 98.05% character level recognition accuracies without and with the generated synthetic data, respectively.
引用
收藏
页码:74 / 79
页数:6
相关论文
共 24 条
[1]  
Athiwaratkun Ben, 2015, ARXIV150702313V1CSCV
[2]   Training of an on-line handwritten Japanese character recognizer by artificial patterns [J].
Chen, Bin ;
Zhu, Bilan ;
Nakagawa, Masaki .
PATTERN RECOGNITION LETTERS, 2014, 35 :178-185
[3]  
Graves A., 2006, PROC INT C MACH LEAR, P369, DOI DOI 10.1145/1143844.1143891
[4]  
Graves A., 2016, P ICML
[5]   A Novel Connectionist System for Unconstrained Handwriting Recognition [J].
Graves, Alex ;
Liwicki, Marcus ;
Fernandez, Santiago ;
Bertolami, Roman ;
Bunke, Horst ;
Schmidhuber, Juergen .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (05) :855-868
[6]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
[7]   The vanishing gradient problem during learning recurrent neural nets and problem solutions [J].
Hochreiter, S .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 1998, 6 (02) :107-116
[8]  
Ioffe Sergey, 2015, P MACHINE LEARNING R, V37, P448, DOI [DOI 10.48550/ARXIV.1502.03167, DOI 10.5555/3015118.3045167]
[9]  
Leung K. C., 2009, 2009 10th International Conference on Document Analysis and Recognition (ICDAR), P1026, DOI 10.1109/ICDAR.2009.48
[10]  
Maas A. L., 2013, Int. Conf. Mach. Learn., P1