Tangential Limits for Harmonic Functions with Respect to I•(Δ): Stable and Beyond

被引:2
作者
Kang, Jaehoon [1 ]
Kim, Panki [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
Bernstein function; Subordinate Brownian motion; Poisson kernel; Harmonic function; (non) tangential limits; L-p-Holder space; SUBORDINATE BROWNIAN MOTIONS; DIRICHLET-TYPE SPACES; FATOU THEOREM;
D O I
10.1007/s11118-014-9449-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss tangential limits for regular harmonic functions with respect to I center dot(Delta):= -I center dot(-Delta) in the C (1,1) open set D in a"e (d) , where I center dot is the complete Bernstein function and d a parts per thousand yen 2. When the exterior function f is local L (p) -Holder continuous of order beta on D (c) with p a (1, a] and beta > 1/p, for a large class of Bernstein function I center dot, we show that the regular harmonic function u (f) with respect to I center dot(Delta), whose value is f on D (c) , converges a.e. through a certain parabola that depends on I center dot and I center dot ('). Our result includes the case I center dot(lambda) = log(1 + lambda (alpha/2)). Our proofs use both the probabilistic and analytic methods. In particular, the Poisson kernel estimates recently obtained in Kang and Kim (J. Korean Math. Soc. 50(5), 1009-1031, 2013) are essential to our approach.
引用
收藏
页码:629 / 644
页数:16
相关论文
共 19 条
[1]  
[Anonymous], STUDIES MATH
[2]   A Fatou theorem for α-harmonic functions in Lipschitz domains [J].
Bass, RF ;
You, D .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (03) :391-408
[3]   A Fatou theorem for a α-harmonic functions [J].
Bass, RF ;
You, DH .
BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (07) :635-648
[4]   ON NOTIONS OF HARMONICITY [J].
Chen, Zhen-Qing .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (10) :3497-3510
[5]   POISSON INTEGRALS OF REGULAR FUNCTIONS [J].
DORRONSORO, JR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (02) :669-685
[6]  
Evans LC., 2018, Measure Theory and Fine Properties of Functions
[7]  
Ikeda N., 1962, J. Math. Kyoto Univ., V2, P79
[8]   ON ESTIMATES OF POISSON KERNELS FOR SYMMETRIC LEVY PROCESSES [J].
Kang, Jaehoon ;
Kim, Panki .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (05) :1009-1031
[9]   GREEN FUNCTION ESTIMATES FOR SUBORDINATE BROWNIAN MOTIONS: STABLE AND BEYOND [J].
Kim, Panki ;
Mimica, Ante .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (08) :4383-4422
[10]   Harnack inequalities for subordinate Brownian motions [J].
Kim, Panki ;
Mimica, Ante .
ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 :1-23