Skin-friction drag reduction in a high-Reynolds-number turbulent boundary layer via real-time control of large-scale structures

被引:68
作者
Abbassi, M. R. [1 ]
Baars, W. J. [1 ]
Hutchins, N. [1 ]
Marusic, I. [1 ]
机构
[1] Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Turbulent boundary layer; Flow control; Large-scale structure; Drag reduction; NEAR-WALL TURBULENCE; SPATIAL-RESOLUTION; FEEDBACK-CONTROL; ACTIVE CONTROL; CHANNEL FLOW; REGION;
D O I
10.1016/j.ijheatfluidflow.2017.05.003
中图分类号
O414.1 [热力学];
学科分类号
摘要
While large-scale motions are most energetic in the logarithmic region of a high-Reynolds-number turbulent boundary layer, they also have an influence in the inner-region. In this paper we describe an experimental investigation of manipulating the large-scale motions and reveal how this affects the turbulence and skin-friction drag. A boundary layer with a friction Reynolds number of 14 400 is controlled using a spanwise array of nine wall-normal jets operated in an on/off mode and with an exit velocity that causes the jets in cross-flow to penetrate within the log-region. Each jet is triggered in real-time with an active controller, driven by a time-resolved footprint of the large-scale motions acquired upstream. Nominally, the controller injects air into large-scale zones with positive streamwise velocity fluctuations; these zones are associated with positive wall-shear stress fluctuations. This control scheme reduced the streamwise turbulence intensity in the log-region up to a downstream distance of more than five times the boundary layer thickness, 6, from the point of actuation. The highest reduction in spectral energy more than 30%-was found for wavelengths larger than 5 delta in the log-region at 1.7 delta downstream of actuation, while scales larger than 2 delta still comprised more than 15% energy reduction in the near-wall region. In addition, a 3.2% reduction in mean skin-friction drag was achieved at 1.7 delta downstream of actuation. Our reductions of the streamwise turbulence intensity and mean skin-friction drag exceed a base line control-case, for which the jet actuators were operated with the same temporal pattern, but not synchronised with the incoming large-scale zones of positive fluctuating velocity. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:30 / 41
页数:12
相关论文
共 45 条
[1]   Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to Reτ=640 [J].
Abe, H ;
Kawamura, H ;
Choi, H .
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2004, 126 (05) :835-843
[2]   Vortex organization in the outer region of the turbulent boundary layer [J].
Adrian, RJ ;
Meinhart, CD ;
Tomkins, CD .
JOURNAL OF FLUID MECHANICS, 2000, 422 :1-54
[3]  
[Anonymous], 2000, CAMBR U PRESS
[4]   Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element [J].
Baars, W. J. ;
Squire, D. T. ;
Talluru, K. M. ;
Abbassi, M. R. ;
Hutchins, N. ;
Marusic, I. .
EXPERIMENTS IN FLUIDS, 2016, 57 (05)
[5]  
Baars W. J, 2014, 19 AUSTR FLUID MECH
[6]   Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model [J].
Baars, Woutijn J. ;
Hutchins, Nicholas ;
Marusic, Ivan .
PHYSICAL REVIEW FLUIDS, 2016, 1 (05)
[7]   Active control of a turbulent boundary layer based on local surface perturbation [J].
Bai, H. L. ;
Zhou, Y. ;
Zhang, W. G. ;
Xu, S. J. ;
Wang, Y. ;
Antonia, R. A. .
JOURNAL OF FLUID MECHANICS, 2014, 750 :316-354
[8]   Reynolds number dependence of large-scale friction control in turbulent channel flow [J].
Canton, Jacopo ;
Orlu, Ramis ;
Chin, Cheng ;
Schlatter, Philipp .
PHYSICAL REVIEW FLUIDS, 2016, 1 (08)
[9]   Viscous effects in control of near-wall turbulence [J].
Chang, Y ;
Collis, SS ;
Ramakrishnan, S .
PHYSICS OF FLUIDS, 2002, 14 (11) :4069-4080
[10]   Criteria for assessing experiments in zero pressure gradient boundary layers [J].
Chauhan, Kapil A. ;
Monkewitz, Peter A. ;
Nagib, Hassan M. .
FLUID DYNAMICS RESEARCH, 2009, 41 (02)