Renormalization Group Flows on Line Defects

被引:72
作者
Cuomo, Gabriel [1 ,2 ]
Komargodski, Zohar [1 ,2 ]
Raviv-Moshe, Avia [1 ]
机构
[1] SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
FIELD-THEORY APPROACH; QUANTUM IMPURITY; ISING-MODEL; C-THEOREM; BOUNDARY; STATES;
D O I
10.1103/PhysRevLett.128.021603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider line defects in d-dimensional conformal field theories (CFTs). The ambient CFT places nontrivial constraints on renormalization group (RG) flows on such line defects. We show that the flow on line defects is consequently irreversible and furthermore a canonical decreasing entropy function exists. This construction generalizes the g theorem to line defects in arbitrary dimensions. We demonstrate our results in a flow between Wilson loops in four dimensions.
引用
收藏
页数:7
相关论文
共 98 条
[1]   EXACT CONFORMAL-FIELD-THEORY RESULTS ON THE MULTICHANNEL KONDO EFFECT - SINGLE-FERMION GREEN-FUNCTION, SELF-ENERGY, AND RESISTIVITY [J].
AFFLECK, I ;
LUDWIG, AWW .
PHYSICAL REVIEW B, 1993, 48 (10) :7297-7321
[2]   UNIVERSAL NONINTEGER GROUND-STATE DEGENERACY IN CRITICAL QUANTUM-SYSTEMS [J].
AFFLECK, I ;
LUDWIG, AWW .
PHYSICAL REVIEW LETTERS, 1991, 67 (02) :161-164
[3]  
Affleck I, 1995, ACTA PHYS POL B, V26, P1869
[4]  
Agmon N.B., ARXIV200906650
[5]   Boundary and defect CFT: open problems and applications [J].
Andrei, N. ;
Bissi, A. ;
Buican, M. ;
Cardy, J. ;
Dorey, P. ;
Drukker, N. ;
Erdmenger, J. ;
Friedan, D. ;
Fursaev, D. ;
Konechny, A. ;
Kristjansen, C. ;
Makabe, I ;
Nakayama, Y. ;
O'Bannon, A. ;
Parini, R. ;
Robinson, B. ;
Ryu, S. ;
Schmidt-Colinet, C. ;
Schomerus, V ;
Schweigert, C. ;
Watts, G. M. T. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (45)
[6]   The a theorem for gauge-Yukawa theories beyond Banks-Zaks fixed point [J].
Antipin, Oleg ;
Gillioz, Marc ;
Molgaard, Esben ;
Sannino, Francesco .
PHYSICAL REVIEW D, 2013, 87 (12)
[7]   Holographic calculation of boundary entropy [J].
Azeyanagi, Tatsuo ;
Takayanagi, Tadashi ;
Karch, Andreas ;
Thompson, Ethan G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (03)
[8]   The local Callan-Symanzik equation: structure and applications [J].
Baume, Florent ;
Keren-Zur, Boaz ;
Rattazzi, Riccardo ;
Vitale, Lorenzo .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08)
[9]  
Beccaria M, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2018)131
[10]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380