3D finite elements modelling of rut depth evolution of flexible pavements with the shakedown theory

被引:0
作者
Allou, Fatima [1 ]
Chazallon, Cyrille [1 ]
Petit, Christophe [1 ]
Hornych, Pierre [2 ]
机构
[1] Univ Limoges, Lab Mech & Modelling Mat & Struct Civil Engn, Egletons, France
[2] Lab Cent Ponts & Chaussees, Mat & Pavements Struct Div, Bouguenais 1, France
来源
ADVANCED CHARACTERISATION OF PAVEMENT SOIL ENGINEERING MATERIALS, VOLS 1 AND 2 | 2007年
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Rutting, due to permanent deformations of unbound materials, is one of the principal damage modes of low traffic pavements. Flexible pavement design methods remain empirical. These mechanistic methods do not take into account the inelastic behaviour of these materials (only linear elasticity is used as mechanical model) and do not predict the rutting under cyclic loading. The objective of this paper is to use a simplified method, based on the concept of the shakedown theory developed by Zarka for metallic structures under cyclic loadings, to estimate the permanent deformations of unbound granular materials (UGM) subjected to traffic loading. Based on repeated load triaxial tests, a general procedure has been developed for the determination of the material parameters of the constitutive model. Finally, the results of a finite elements modelling of the long-term behaviour of a flexible pavement with the simplified method are presented and compared to the results of a full scale pavement experiment performed at LCPC. The initial stress state, water content and anisotropy of the granular layers are taken into account in this framework. Finally the calculation of the rut depth evolution with time is carried out.
引用
收藏
页码:451 / 460
页数:10
相关论文
共 50 条
[41]   Hybrid Steel Fiber of Rigid Pavements: A 3D Finite Element and Parametric Analysis [J].
Al Harki, Bakhtiyar Q. Khawaja ;
Al Jawahery, Mohammed S. ;
Abdulmawjoud, Ayman A. .
COATINGS, 2022, 12 (10)
[42]   A 3D finite elements micromagnetic simulation of a ferromagnetic particle [J].
Ntallis, N. ;
Efthimiadis, K. G. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 363 :152-157
[43]   A family of Crouzeix-Raviart finite elements in 3D [J].
Ciarlet, Patrick, Jr. ;
Dunkl, Charles F. ;
Sauter, Stefan A. .
ANALYSIS AND APPLICATIONS, 2018, 16 (05) :649-691
[44]   Formulation of 3D finite elements for hepatic radiofrequency ablation [J].
Jiang, Yansheng ;
Mulier, Stefaan ;
Chong, Wang ;
Diel Rambo, Michele Cristiane ;
Chen, Feng ;
Marchal, Guy ;
Ni, Yicheng .
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2010, 9 (03) :225-235
[45]   Edge finite elements for 3D electromagnetic field modeling [J].
Tarvydas, P. .
ELEKTRONIKA IR ELEKTROTECHNIKA, 2007, (04) :29-32
[46]   DISPERSION PROPERTIES OF SIMPLE 3D FINITE-ELEMENTS [J].
JOHNSON, E .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1995, 11 (02) :97-103
[47]   Formulation of 3D finite elements using curvilinear coordinates [J].
Cinefra, Maria .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (06) :879-888
[48]   Pathophysiological aspects of cystocele with a 3D finite elements model [J].
Géry Lamblin ;
Olivier Mayeur ;
Géraldine Giraudet ;
Estelle Jean dit Gautier ;
Gautier Chene ;
Mathias Brieu ;
Chrystèle Rubod ;
Michel Cosson .
Archives of Gynecology and Obstetrics, 2016, 294 :983-989
[49]   3D adaptive finite element method with edge elements [J].
Ryu, JS ;
Xiuke, Y ;
Koh, CS ;
Dexin, X ;
Hahn, SY .
ICEMS'2001: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS I AND II, 2001, :1174-1177
[50]   Pathophysiological aspects of cystocele with a 3D finite elements model [J].
Lamblin, Gery ;
Mayeur, Olivier ;
Giraudet, Geraldine ;
Gautier, Estelle Jean Dit ;
Chene, Gautier ;
Brieu, Mathias ;
Rubod, Chrystele ;
Cosson, Michel .
ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2016, 294 (05) :983-989