Nanostructured alkali cation incorporated δ-MnO2 cathode materials for aqueous sodium-ion batteries

被引:79
作者
Liu, Yang [1 ,2 ]
Qiao, Yun [1 ,2 ]
Zhang, Wuxing [1 ]
Wang, Huan [1 ]
Chen, Kongyao [1 ]
Zhu, Huaping [1 ]
Li, Zhen [1 ]
Huang, Yunhui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[2] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Peoples R China
关键词
LONG CYCLE LIFE; ANODE MATERIALS; HIGHLY EFFICIENT; MANGANESE OXIDES; WATER OXIDATION; STORAGE; PERFORMANCE; NANOSHEETS; OXYGEN; SUPERCAPACITORS;
D O I
10.1039/c5ta00396b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanostructured delta-MnO2 incorporated with alkali cations (A-delta-MnO2, A = K+, Na+) has been synthesized and evaluated as a cathode material for aqueous sodium-ion batteries. It is observed that Na+ ions are easier than K+ ions to intercalate into the layered delta-MnO2 due to their smaller ion radius. The incorporation of K+ and Na+ into delta-MnO2 shows a great influence on the electrochemical performance of the layered delta-MnO2. The full cell with (K, Na)-co-incorporated delta-MnO2 (K : Na : Mn = 0.15 : 0.26 : 1) hierarchical nanospheres as the cathode and NaTi2(PO4)(3) as the anode exhibits a specific capacity of 74.6 mA h g(-1) at 150 mA g(-1), and the capacity remains at similar to 62% at a high current density of 600 mA g(-1). The electrochemical cycling does not induce observable structural degradation even after 200 cycles. K-incorporated and (K, Na)-co-incorporated delta-MnO2 electrodes have superior capacity and rate capability, which can be ascribed to their hierarchical structure and adequate crystallinity.
引用
收藏
页码:7780 / 7785
页数:6
相关论文
共 45 条
[1]   The smart-grid solution [J].
Amin, Massoud .
NATURE, 2013, 499 (7457) :145-147
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Nanostructured Alkaline-Cation-Containing-MnO2 for Photocatalytic Water Oxidation [J].
Boppana, Venkata Bharat Ram ;
Yusuf, Seif ;
Hutchings, Gregory S. ;
Jiao, Feng .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (07) :878-884
[4]   New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes [J].
Chen, Liang ;
Gu, Qingwen ;
Zhou, Xufeng ;
Lee, Saixi ;
Xia, Yonggao ;
Liu, Zhaoping .
SCIENTIFIC REPORTS, 2013, 3
[5]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[6]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[7]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918
[8]   Room-Temperature Synthesis of Manganese Oxide Monosheets [J].
Kai, Kazuya ;
Yoshida, Yukihiro ;
Kageyama, Hiroshi ;
Saito, Gunzi ;
Ishigaki, Tetsuo ;
Furukawa, Yu ;
Kawamata, Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (47) :15938-15943
[9]   Investigation of pseudocapacitive charge-storage reaction of MnO2.nH2O supercapacitors in aqueous electrolytes [J].
Kuo, Shin-Liang ;
Wu, Nae-Lih .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (07) :A1317-A1324
[10]   Designing thermal and electrochemical oxidation processes for δ-MnO2 nanofibers for high-performance electrochemical capacitors [J].
Lee, Ji-Hoon ;
Yang, Tae-Youl ;
Kang, Ho-Young ;
Nam, Dae-Hyun ;
Kim, Na-Rae ;
Lee, Yoo-Yong ;
Lee, Se-Hee ;
Joo, Young-Chang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (20) :7197-7204