Thermoelectric transport in ZnO and GaN nanowires

被引:5
作者
Galagali, S. M. [1 ,2 ]
Sankeshwar, N. S. [1 ]
Mulimani, B. G. [1 ]
机构
[1] Karnatak Univ, Dept Phys, Dharwad 580003, Karnataka, India
[2] KLSs VDR Inst Technol, Dept Phys, Haliyal 581329, Karnataka, India
关键词
Nanostructures; Semiconductors; Phonons; Piezoelectricity; Transport properties; DIMENSIONAL ELECTRON-GAS; SEMICONDUCTOR NANOWIRES; PHONON-SCATTERING; QUANTUM WIRES; MOBILITY; TRANSISTORS; WURTZITE;
D O I
10.1016/j.jpcs.2015.03.016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermoelectric transport properties - electron mobility, mu, diffusion thermopower, S-d, and electronic thermal conductivity, kappa(e) - are investigated in ZnO and GaN nanowires (NWs) for 10 < T < 300 K. Expressions for the acoustic phonon limited electron momentum relaxation rates, considering the inelasticity of the electron-acoustic phonon interaction in wurtzite (WZ) and zincblende (ZB) structures, are given. Numerical calculations of acoustic phonon limited mu, S-d and kappa(e), presented as a function of temperature, thickness and the electron concentration of the NWs, bring out the importance of the piezoelectric coupling in the two systems. The properties studied within the elastic scattering approximation, usually used in analyses to explain acoustic-phonon limited transport, are found to be underestimated for both WZ and ZB structures. Calculations of room temperature mu, S-d and kappa(e) including impurity, polar optical phonon and surface roughness scatterings, indicate polar optical phonons (impurities) to be the dominant sources of limiting the thermoelectric properties in ZnO (GaN) NWs. The mobility value for 10 nm GaN NW is in agreement with experimental data of Huang et al. [2] [Y. Huang, Duan, Y. Cui, C.M. Lieber, Nano Lett. 2 (2002), 101]. Detailed studies for ultrathin NWs are required to better understand electron-phonon interaction in these systems. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8 / 17
页数:10
相关论文
共 33 条
  • [1] [Anonymous], RECENT TRENDS THERMO
  • [2] QUANTUM SIZE EFFECT IN THIN-WIRE TRANSPORT
    ARORA, VK
    [J]. PHYSICAL REVIEW B, 1981, 23 (10): : 5611 - 5612
  • [3] Review of zincblende ZnO: Stability of metastable ZnO phases
    Ashrafi, A.
    Jagadish, C.
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 102 (07)
  • [4] BERNARDINI F, 1997, PHYS REV B, V56, P16
  • [5] Lattice controlled transport in quantum wires at low temperatures
    Bhattacharya, D. P.
    Midday, S.
    Nag, S.
    Biswas, A.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2013, 47 : 264 - 269
  • [6] Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations
    Catti, M
    Noel, Y
    Dovesi, R
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2003, 64 (11) : 2183 - 2190
  • [7] Fabrication and characterization of pre-aligned gallium nitride nanowire field-effect transistors
    Cha, HY
    Wu, HQ
    Chandrashekhar, M
    Choi, YC
    Chae, S
    Koley, G
    Spencer, MG
    [J]. NANOTECHNOLOGY, 2006, 17 (05) : 1264 - 1271
  • [8] Ultrathin GaN nanowires: Electronic, thermal, and thermoelectric properties
    Davoody, A. H.
    Ramayya, E. B.
    Maurer, L. N.
    Knezevic, I.
    [J]. PHYSICAL REVIEW B, 2014, 89 (11)
  • [9] Determining factors of thermoelectric properties of semiconductor nanowires
    Demchenko, Denis O.
    Heinz, Peter D.
    Lee, Byounghak
    [J]. NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 6
  • [10] PHONON-LIMITED MOBILITY IN A QUASI-ONE-DIMENSIONAL SEMICONDUCTOR
    FISHMAN, G
    [J]. PHYSICAL REVIEW B, 1987, 36 (14): : 7448 - 7456