Stabilization of Plutonium Nano-Colloids by Epitaxial Distortion on Mineral Surfaces

被引:87
作者
Powell, Brian A. [1 ]
Dai, Zurong [2 ]
Zavarin, Mavrik [2 ]
Zhao, Pihong [2 ]
Kersting, Annie B. [2 ]
机构
[1] Clemson Univ, Anderson, SC 29625 USA
[2] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci Directorate, Livermore, CA 94550 USA
关键词
OXIDE; SOLUBILITY; TRANSPORT; HYDROLYSIS; SPECIATION; CHEMISTRY; WATER; SITE;
D O I
10.1021/es1033487
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The subsurface migration of Pu may be enhanced by the presence of colloidal forms of Pu. Therefore, complete evaluation of the risk posed by subsurface Pu contamination needs to include a detailed physical/chemical understanding of Pu colloid formation and interactions of Pu colloids with environmentally relevant solid phases. Transmission electron microscopy (TEM) was used to characterize Pu nanocolloids and interactions of Pu nanocolloids with goethite and quartz.. We report that intrinsic Pu nanocolloids generated in the absence of goethite or quartz were 2-5 nm in diameter, and both electron diffraction analysis and HRTEM confirm the expected Fm3m space group with the fcc, PuO2 structure. Plutonium nanocolloids formed on goethite have undergone a lattice distortion relative to the ideal fluorite-type structure, fcc, PuO2, resulting in the formation of a bcc, Pu4O7 structure. This structural distortion results from an epitaxial growth of the plutonium colloid on goethite, leading to stronger binding of plutonium to goethite compared with other minerals such as quartz, where the distortion was not observed. This finding provides new insight for understanding how molecular-scale behavior at the mineral-water interface may facilitate transport of plutonium at the field scale.
引用
收藏
页码:2698 / 2703
页数:6
相关论文
共 30 条
[1]  
CANTRELL KJ, 2006, PNNL18640
[2]   SOLUTION CHEMISTRY OF THE ACTINIDES [J].
CHOPPIN, GR .
RADIOCHIMICA ACTA, 1983, 32 (1-3) :43-53
[3]   Local and nanoscale structure and speciation in the PuO2+x-y(OH)2y•zH2O system [J].
Conradson, SD ;
Begg, BD ;
Clark, DL ;
den Auwer, C ;
Ding, M ;
Dorhout, PK ;
Espinosa-Faller, FJ ;
Gordon, PL ;
Haire, RG ;
Hess, NJ ;
Hess, RF ;
Keogh, DW ;
Morales, LA ;
Neu, MP ;
Paviet-Hartmann, P ;
Runde, W ;
Tait, CD ;
Veirs, DK ;
Villella, PM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (41) :13443-13458
[4]  
HAIRE RG, 1971, J ELECTRON MICROSC, V20, P8
[5]   Reaction of plutonium dioxide with water:: Formation and properties of PuO2+x [J].
Haschke, JM ;
Allen, TH ;
Morales, LA .
SCIENCE, 2000, 287 (5451) :285-287
[6]   Plutonium and neptunium speciation bound to hydrous ferric oxide colloids [J].
Kalmykov, Stepan N. ;
Kriventsov, Vladimir V. ;
Teterin, Yuri A. ;
Novikov, Alexander P. .
COMPTES RENDUS CHIMIE, 2007, 10 (10-11) :1060-1066
[7]   Influence of oxidation states on plutonium mobility during long-term transport through an unsaturated subsurface environment [J].
Kaplan, DI ;
Powell, BA ;
Demirkanli, DI ;
Fjeld, RA ;
Molz, FJ ;
Serkiz, SM ;
Coates, JT .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (19) :5053-5058
[8]   THE REDOX CHEMISTRY OF PU(V)O-2+ INTERACTION WITH COMMON MINERAL SURFACES IN DILUTE-SOLUTIONS AND SEAWATER [J].
KEENEYKENNICUTT, WL ;
MORSE, JW .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1985, 49 (12) :2577-2588
[9]   Migration of plutonium in ground water at the Nevada Test Site [J].
Kersting, AB ;
Efurd, DW ;
Finnegan, DL ;
Rokop, DJ ;
Smith, DK ;
Thompson, JL .
NATURE, 1999, 397 (6714) :56-59
[10]  
Kim J.J., 1986, Handbook on the Physics and Chemistryof the Actinides, P413