The quantum dynamics of the compactified trigonometric Ruijs']jsenaars-Schneider model

被引:33
作者
van Diejen, JF [1 ]
Vinet, L [1 ]
机构
[1] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
美国国家科学基金会;
关键词
D O I
10.1007/s002200050442
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We quantize a compactified version of the trigonometric Ruijsenaars-Schneider particle model with a phase space that is symplectomorphic to the complex projective space CPN. The quantum Hamiltonian is realized as a discrete difference operator acting in a finite-dimensional Hilbert space of complex functions with support in a finite uniform lattice over a convex polytope (viz,, a restricted Weyl alcove with walls having a thickness proportional to the coupling parameter). We solve the corresponding finite-dimensional (bispectral) eigenvalue problem in terms of discretized Macdonald polynomials with q (and t) on the unit circle. The normalization of the wave functions is determined using a terminating version of a recent summation formula due to Aomoto, Ito and Macdonald. The resulting eigenfunction transform determines a discrete Fourier-type involution in the Hilbert space of lattice functions. This is in correspondence with Ruijsenaars observation that - at the classical level - the action-angle transformation defines an (anti)symplectic involution of CPN. From the perspective of algebraic combinatorics, our results give rise to a novel system of bilinear summation identities for the Macdonald symmetric functions.
引用
收藏
页码:33 / 74
页数:42
相关论文
共 50 条
[31]   On the Hamiltonian form of equations of the elliptic spin Ruijs']jsenaars-Schneider model [J].
Soloviev, F. L. .
RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (06) :1142-1144
[32]   Self-duality of the compactified Ruijs']jsenaars-Schneider system from quasi-Hamiltonian reduction [J].
Feher, L. ;
Klimcik, C. .
NUCLEAR PHYSICS B, 2012, 860 (03) :464-515
[33]   R-matrix quantization of the elliptic Ruijs']jsenaars-Schneider model [J].
Arutyunov, GE ;
Chekhov, LO ;
Frolov, SA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (02) :405-432
[34]   The Quantum Dynamics of the Compactified Trigonometric Ruijsenaars–Schneider Model [J].
J. F. van Diejen ;
L. Vinet .
Communications in Mathematical Physics, 1998, 197 :33-74
[35]   The nondynamical r-matrix structure for elliptic Ruijs']jsenaars-Schneider model [J].
Hou, BY ;
Yang, WL .
GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, 1998, :279-283
[36]   ELLIPTIC SOLUTIONS OF THE TODA LATTICE HIERARCHY AND THE ELLIPTIC RUIJS']JSENAARS-SCHNEIDER MODEL [J].
Prokofev, V. V. ;
Zabrodin, A., V .
THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 208 (02) :1093-1115
[37]   The Lax pair for C2-type Ruijs']jsenaars-Schneider model [J].
Chen, K ;
Hou, BY ;
Yang, WL .
CHINESE PHYSICS, 2001, 10 (06) :550-554
[38]   Multiplicative quiver varieties and generalised Ruijs']jsenaars-Schneider models [J].
Chalykh, Oleg ;
Fairon, Maxime .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 121 :413-437
[39]   Rational Ruijs']jsenaars-Schneider hierarchy and bispectral difference operators [J].
Iliev, Plamen .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 229 (02) :184-190
[40]   On the integrability of classical Ruijs']jsenaars-Schneider model of BC2 type [J].
Inozmetsev, VI ;
Sasaki, R .
MODERN PHYSICS LETTERS A, 2001, 16 (30) :1941-1949