The quantum dynamics of the compactified trigonometric Ruijs']jsenaars-Schneider model

被引:33
作者
van Diejen, JF [1 ]
Vinet, L [1 ]
机构
[1] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
美国国家科学基金会;
关键词
D O I
10.1007/s002200050442
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We quantize a compactified version of the trigonometric Ruijsenaars-Schneider particle model with a phase space that is symplectomorphic to the complex projective space CPN. The quantum Hamiltonian is realized as a discrete difference operator acting in a finite-dimensional Hilbert space of complex functions with support in a finite uniform lattice over a convex polytope (viz,, a restricted Weyl alcove with walls having a thickness proportional to the coupling parameter). We solve the corresponding finite-dimensional (bispectral) eigenvalue problem in terms of discretized Macdonald polynomials with q (and t) on the unit circle. The normalization of the wave functions is determined using a terminating version of a recent summation formula due to Aomoto, Ito and Macdonald. The resulting eigenfunction transform determines a discrete Fourier-type involution in the Hilbert space of lattice functions. This is in correspondence with Ruijsenaars observation that - at the classical level - the action-angle transformation defines an (anti)symplectic involution of CPN. From the perspective of algebraic combinatorics, our results give rise to a novel system of bilinear summation identities for the Macdonald symmetric functions.
引用
收藏
页码:33 / 74
页数:42
相关论文
共 50 条
  • [21] Nondynamical r-matrix structure of the sl2 trigonometric Ruijs']jsenaars-Schneider model
    Chen, K
    Hou, BY
    Yang, WL
    Zhen, Y
    CHINESE PHYSICS LETTERS, 1999, 16 (01): : 1 - 3
  • [22] On N=2 supersymmetric Ruijs']jsenaars-Schneider models
    Krivonos, Sergey
    Lechtenfeld, Olaf
    PHYSICS LETTERS B, 2020, 807
  • [23] The Ruijs']jsenaars-Schneider model in the context of Seiberg-Witten theory
    Braden, HW
    Marshakov, A
    Mironov, A
    Morozov, A
    NUCLEAR PHYSICS B, 1999, 558 (1-2) : 371 - 390
  • [24] Spin Ruijs']jsenaars-Schneider Models from Reduction
    Arutyunov, G.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2020, 17 (05) : 730 - 733
  • [25] Integrable discretizations of the spin Ruijs']jsenaars-Schneider models
    Ragnisco, O
    Suris, YB
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (09) : 4680 - 4691
  • [26] Algebraic linearization of hyperbolic Ruijs']jsenaars-Schneider systems
    Caseiro, R
    Françoise, JP
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 : 58 - 61
  • [27] Constrained Toda hierarchy and turning points of the Ruijs']jsenaars-Schneider model
    Krichever, I
    Zabrodin, A.
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (02)
  • [28] Integrability of the Cn and BCn Ruijs']jsenaars-Schneider models
    Chen, K
    Hou, B
    Yang, WL
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (12) : 8132 - 8147
  • [29] R-matrix quantization of the elliptic Ruijs']jsenaars-Schneider model
    Arutyunov, GE
    Chekhov, LO
    Frolov, SA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 111 (02) : 536 - 562
  • [30] Hyperbolic Spin Ruijs']jsenaars-Schneider Model from Poisson Reduction
    Arutyunov, Gleb E.
    Olivucci, Enrico
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 309 (01) : 31 - 45