The quantum dynamics of the compactified trigonometric Ruijs']jsenaars-Schneider model

被引:33
|
作者
van Diejen, JF [1 ]
Vinet, L [1 ]
机构
[1] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
美国国家科学基金会;
关键词
D O I
10.1007/s002200050442
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We quantize a compactified version of the trigonometric Ruijsenaars-Schneider particle model with a phase space that is symplectomorphic to the complex projective space CPN. The quantum Hamiltonian is realized as a discrete difference operator acting in a finite-dimensional Hilbert space of complex functions with support in a finite uniform lattice over a convex polytope (viz,, a restricted Weyl alcove with walls having a thickness proportional to the coupling parameter). We solve the corresponding finite-dimensional (bispectral) eigenvalue problem in terms of discretized Macdonald polynomials with q (and t) on the unit circle. The normalization of the wave functions is determined using a terminating version of a recent summation formula due to Aomoto, Ito and Macdonald. The resulting eigenfunction transform determines a discrete Fourier-type involution in the Hilbert space of lattice functions. This is in correspondence with Ruijsenaars observation that - at the classical level - the action-angle transformation defines an (anti)symplectic involution of CPN. From the perspective of algebraic combinatorics, our results give rise to a novel system of bilinear summation identities for the Macdonald symmetric functions.
引用
收藏
页码:33 / 74
页数:42
相关论文
共 50 条
  • [1] The Ruijs']jsenaars-Schneider model
    Braden, HW
    Sasaki, R
    PROGRESS OF THEORETICAL PHYSICS, 1997, 97 (06): : 1003 - 1017
  • [2] The Dn Ruijs']jsenaars-Schneider model
    Chen, K
    Hou, BY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (37): : 7579 - 7589
  • [3] Supersymmetric Ruijs']jsenaars-Schneider Model
    Blondeau-Fournier, O.
    Desrosiers, P.
    Mathieu, P.
    PHYSICAL REVIEW LETTERS, 2015, 114 (12)
  • [4] Note on Ruijs']jsenaars-Schneider Model
    Khastyan, E.
    Krivonos, S.
    Nersessian, A.
    PHYSICS OF PARTICLES AND NUCLEI, 2024, 55 (03) : 630 - 633
  • [5] On the Hamiltonian formulation of the trigonometric spin Ruijs']jsenaars-Schneider system
    Chalykh, Oleg
    Fairon, Maxime
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (11) : 2893 - 2940
  • [6] New compact forms of the trigonometric Ruijs']jsenaars-Schneider system
    Feher, L.
    Kluck, T. J.
    NUCLEAR PHYSICS B, 2014, 882 : 97 - 127
  • [7] Field analogue of the Ruijs']jsenaars-Schneider model
    Zabrodin, A.
    Zotov, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (07)
  • [8] Spectra of the quantized action variables of the compactified Ruijs']jsenaars-Schneider system
    Feher, L.
    Klimcik, C.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 171 (02) : 704 - 714
  • [9] On the superintegrability of the rational Ruijs']jsenaars-Schneider model
    Ayadi, V.
    Feher, L.
    PHYSICS LETTERS A, 2010, 374 (19-20) : 1913 - 1916
  • [10] Trigonometric and Elliptic Ruijs']jsenaars-Schneider Systems on the Complex Projective Space
    Feher, L.
    Goerbe, T. F.
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (10) : 1429 - 1449