WENO scheme with new smoothness indicator for Hamilton-Jacobi equation

被引:11
作者
Huang, Cong [1 ]
机构
[1] Guilin Univ Technol, Coll Sci, Guilin, Guangxi, Peoples R China
关键词
WENO scheme; New smoothness indicator; Hamilton-Jacobi equation; ESSENTIALLY NONOSCILLATORY SCHEMES; HYPERBOLIC CONSERVATION-LAWS; EFFICIENT IMPLEMENTATION; TRIANGULAR MESHES;
D O I
10.1016/j.amc.2016.05.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a new weighted essentially non-oscillatory (WENO) scheme for Hamilton-Jacobi (HJ) equation by proposing a new family of smoothness indicators, which includes the smoothness indicator in Jiang and Peng (2000) as one of its members. The new family of smoothness indicators has three parameters. By choosing the parameters properly, the new WENO scheme provides more accurate numerical solution than the original one, and increases little computational cost. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:21 / 32
页数:12
相关论文
共 17 条
[1]   A high-order symmetrical weighted hybrid ENO-flux limiter scheme for hyperbolic conservation laws [J].
Abedian, Rooholah ;
Adibi, Hojatollah ;
Dehghan, Mehdi .
COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (01) :106-127
[2]   A high-order non-oscillatory central scheme with non-staggered grids for hyperbolic conservation laws [J].
Dehghan, Mehdi ;
Jazlanian, Rooholah .
COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (06) :1284-1294
[3]   An improved mapped weighted essentially non-oscillatory scheme [J].
Feng, Hui ;
Huang, Cong ;
Wang, Rong .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 :453-468
[4]   A New Mapped Weighted Essentially Non-oscillatory Scheme [J].
Feng, Hui ;
Hu, Fuxing ;
Wang, Rong .
JOURNAL OF SCIENTIFIC COMPUTING, 2012, 51 (02) :449-473
[5]   Strong stability-preserving high-order time discretization methods [J].
Gottlieb, S ;
Shu, CW ;
Tadmor, E .
SIAM REVIEW, 2001, 43 (01) :89-112
[6]   Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points [J].
Henrick, AK ;
Aslam, TD ;
Powers, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 207 (02) :542-567
[7]  
Jiang G. S., 1996, J COMPUT PHYS, V176, P202, DOI DOI 10.1006/J
[8]   Efficient implementation of weighted ENO schemes [J].
Jiang, GS ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (01) :202-228
[9]  
Jin S., 1998, SIAM J NUMER ANAL, V35, P2163
[10]   Central WENO schemes for Hamilton-Jacobi equations on triangular meshes [J].
Levy, Doron ;
Nayak, Suhas ;
Shu, Chi-Wang ;
Zhang, Yong-Tao .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (06) :2229-2247