A light-inducible CRISPR-Cas9 system for control of endogenous gene activation

被引:470
|
作者
Polstein, Lauren R. [1 ,2 ,3 ]
Gersbach, Charles A. [1 ,2 ,3 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27706 USA
[2] Duke Univ, Ctr Genom & Computat Biol, Durham, NC USA
[3] Duke Univ, Med Ctr, Dept Orthopaed Surg, Durham, NC USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
TRANSCRIPTION FACTORS; SPATIOTEMPORAL CONTROL; PROTEIN INTERACTIONS; EXPRESSION; INDUCTION; CELLS;
D O I
10.1038/nchembio.1753
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Optogenetic systems enable precise spatial and temporal control of cell behavior. We engineered a light-activated CRISPR-Cas9 effector (LACE) system that induces transcription of endogenous genes in the presence of blue light. This was accomplished by fusing the light-inducible heterodimerizing proteins CRY2 and CIB1 to a transactivation domain and the catalytically inactive dCas9, respectively. The versatile LACE system can be easily directed to new DNA sequences for the dynamic regulation of endogenous genes.
引用
收藏
页码:198 / U179
页数:4
相关论文
共 50 条
  • [21] Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9
    Bubeck, Felix
    Hoffmann, Mareike D.
    Harteveld, Zander
    Aschenbrenner, Sabine
    Bietz, Andreas
    Waldhauer, Max C.
    Boerner, Kathleen
    Fakhiri, Julia
    Schmelas, Carolin
    Dietz, Laura
    Grimm, Dirk
    Correia, Bruno E.
    Eils, Roland
    Niopek, Dominik
    NATURE METHODS, 2018, 15 (11) : 924 - +
  • [22] Engineering Genes with CRISPR-Cas9
    Luo, Michelle L.
    Beisel, Chase L.
    CHEMICAL ENGINEERING PROGRESS, 2016, 112 (09) : 36 - 41
  • [23] Rescue of the endogenous FVIII expression in hemophilia A mice using CRISPR-Cas9 mRNA LNPs
    Chen, Chun-Yu
    Cai, Xiaohe
    Konkle, Barbara A.
    Miao, Carol H.
    MOLECULAR THERAPY NUCLEIC ACIDS, 2024, 35 (04):
  • [24] CRISPR-Cas9 for muscle dystrophies
    Ballouhey, Oceane
    Bartoli, Marc
    Levy, Nicolas
    M S-MEDECINE SCIENCES, 2020, 36 (04): : 358 - 366
  • [25] Harnessing CRISPR-Cas9 as an anti-mycobacterial system
    Sodani, Megha
    Misra, Chitra S.
    Rath, Devashish
    Kulkarni, Savita
    MICROBIOLOGICAL RESEARCH, 2023, 270
  • [26] Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System
    Altenbuchner, Josef
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2016, 82 (17) : 5421 - 5427
  • [27] A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi
    Nodvig, Christina S.
    Nielsen, Jakob B.
    Kogle, Martin E.
    Mortensen, Uffe H.
    PLOS ONE, 2015, 10 (07):
  • [28] Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era
    Yagoubat, Akila
    Corrales, Rosa M.
    Bastien, Patrick
    Leveque, Maude F.
    Sterkers, Yvon
    TRENDS IN PARASITOLOGY, 2020, 36 (09) : 745 - 760
  • [29] Design of hypoxia responsive CRISPR-Cas9 for target gene regulation
    An, Yan
    Talwar, Chandana S.
    Park, Kwang-Hyun
    Ahn, Woo-Chan
    Lee, Su-Jin
    Go, Seong-Ryeong
    Cho, Jin Hwa
    Kim, Do Yon
    Kim, Yong-Sam
    Cho, Sayeon
    Kim, Jeong-Hoon
    Kim, Tae-Jip
    Woo, Eui-Jeon
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [30] In Vivo Ovarian Cancer Gene Therapy Using CRISPR-Cas9
    He, Zhi-Yao
    Zhang, Ya-Guang
    Yang, Yu-Han
    Ma, Cui-Cui
    Wang, Ping
    Du, Wei
    Li, Ling
    Xiang, Rong
    Song, Xiang-Rong
    Zhao, Xia
    Yao, Shao-Hua
    Wei, Yu-Quan
    HUMAN GENE THERAPY, 2018, 29 (02) : 223 - 233