Combining Remote and In-situ Sensing for Persistent Monitoring of Water Quality

被引:1
作者
Rojas, Cesar A. [1 ]
Reis, Gregory M. [1 ]
Albayrak, Arif R. [2 ,3 ]
Osmanoglu, Batuhan [2 ]
Bobadilla, Leonardo [1 ]
Smith, Ryan N. [4 ]
机构
[1] Florida Int Univ, Knight Fdn Sch Comp & Informat Sci, Miami, FL 33199 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA
[4] Florida Int Univ, Inst Environm, Miami, FL 33199 USA
来源
OCEANS 2022 | 2022年
关键词
remote sensing; machine learning; water quality; logistic regression; estimation; robots; chlorophyll-a; CHLOROPHYLL-A CONCENTRATION; LANDSAT; MODEL;
D O I
10.1109/OCEANSChennai45887.2022.9775339
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Many studies suggest that water quality parameters can be estimated by applying statistical and machine learning methods using remote sensing or in-situ data. However, identifying best practices for implementing solutions appears to be done on a case-by-case basis. In our case, we have in-situ data that covers a large period, but only small areas of Biscayne Bay, Florida. In this paper, we combine available in-situ data with remote sensing data captured by Landsat 8 OLI-TIRS Collection 2 Level 2(L8), Sentinel-2 L2A(S2), and Sentinel-3 OLCI L1B(S3). The combined data set is for use in a water quality parameter estimation application. Our contributions are two-fold. First, we present a pipeline for data collection, processing, and co-location that results in a usable data set of combined remote sensing and in-situ data. Second, we propose a classification model using the combined data set to identify areas of interest for future data collection missions based on chlorophyll-a in-situ measurements. To further prove our methodology, we conduct a data collection mission using one of the predicted paths from our model.
引用
收藏
页数:6
相关论文
共 30 条
  • [1] Global bias adjustment for MODIS aerosol optical thickness using neural network
    Albayrak, Arif
    Wei, Jennifer
    Petrenko, Maksym
    Lynnes, Christopher
    Levy, Robert C.
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2013, 7
  • [2] [Anonymous], 1976, WORST CASE ANAL NEW
  • [3] [Anonymous], 2021, SENTINEL HUB API DOC
  • [4] AUVAC, 2021, YSI EC
  • [5] Karenia: The biology and ecology of a toxic genus
    Brand, Larry E.
    Campbell, Lisa
    Bresnan, Eileen
    [J]. HARMFUL ALGAE, 2012, 14 : 156 - 178
  • [6] New capabilities of Sentinel-2A/B satellites combined with in situ data for monitoring small harmful algal blooms in complex coastal waters
    Caballero, Isabel
    Fernandez, Raul
    Escalante, Oscar Moreno
    Maman, Luz
    Navarro, Gabriel
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [7] Online forecasting chlorophyll a concentrations by an auto-regressive integrated moving average model: Feasibilities and potentials
    Chen, Qiuwen
    Guan, Tiesheng
    Yun, Liu
    Li, Ruonan
    Recknagel, Friedrich
    [J]. HARMFUL ALGAE, 2015, 43 : 58 - 65
  • [8] The Harmonized Landsat and Sentinel-2 surface reflectance data set
    Claverie, Martin
    Ju, Junchang
    Masek, Jeffrey G.
    Dungan, Jennifer L.
    Vermote, Eric F.
    Roger, Jean-Claude
    Skakun, Sergii V.
    Justice, Christopher
    [J]. REMOTE SENSING OF ENVIRONMENT, 2018, 219 : 145 - 161
  • [9] Cruz R. C., REV RECENT MACHINE L, P2021
  • [10] Florin T., 2020, MIAMI DADE COUNTY CO