EMPIRICAL PROCESSES FOR RECURRENT AND TRANSIENT RANDOM WALKS IN RANDOM SCENERY

被引:1
作者
Guillotin-Plantard, Nadine [1 ]
Pene, Francoise [2 ]
Wendler, Martin [3 ]
机构
[1] Univ Lyon 1, Univ Lyon, CNRS UMR 5208, Inst Camille Jordan, 43,Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[2] Univ Brest, IUF, LMBA, UMR CNRS 6205, F-29238 Brest, France
[3] Otto von Guericke Univ, Inst Math Stochast, D-39106 Magdeburg, Germany
关键词
Random walk; random scenery; empirical process; 2-DIMENSIONAL RANDOM-WALKS; LIMIT-THEOREM; DEVIATIONS; CONVERGENCE; DIFFUSIONS; INVARIANCE;
D O I
10.1051/ps/2019030
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we are interested in the asymptotic behaviour of the sequence of processes (W-n(s,t))(s,t is an element of[0,1]) with W-n(s,t) := Sigma(left perpendicularn tright perpendicular)(k=1) (1({xi Sk <= s}) - s) where (xi(x), x is an element of Z(d)) is a sequence of independent random variables uniformly distributed on [0, 1] and (S-n)(n is an element of N) is a random walk evolving in Z(d), independent of the xi's. In M. Wendler [Stoch. Process. Appl. 126 (2016) 2787-2799], the case where (S-n)(n is an element of N) is a recurrent random walk in Z such that (n(-1/alpha)S(n))(n >= 1) converges in distribution to a stable distribution of index alpha, with alpha is an element of (1, 2], has been investigated. Here, we consider the cases where (S-n)(n is an element of N) is either: (a) a transient random walk in Z(d), (b) a recurrent random walk in Z(d) such that (n(-1/d)S(n))(n >= 1) converges in distribution to a stable distribution of index d is an element of{1, 2}.
引用
收藏
页码:127 / 137
页数:11
相关论文
共 36 条
[1]  
[Anonymous], 2006, LATIN AM POLITICS SO, V48, P53
[2]  
[Anonymous], 1999, Convergence of Probability Measures
[3]   Random walk in random scenery and self-intersection local times in dimensions d≥5 [J].
Asselah, Amine ;
Castell, Fabienne .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 138 (1-2) :1-32
[4]   ALMOST SURE INVARIANCE PRINCIPLE FOR EMPIRICAL DISTRIBUTION FUNCTION OF MIXING RANDOM-VARIABLES [J].
BERKES, I ;
PHILIPP, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 41 (02) :115-137
[5]   CONVERGENCE CRITERIA FOR MULTIPARAMETER STOCHASTIC PROCESSES AND SOME APPLICATIONS [J].
BICKEL, PJ ;
WICHURA, MJ .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05) :1656-&
[6]   A CENTRAL LIMIT-THEOREM FOR TWO-DIMENSIONAL RANDOM-WALKS IN RANDOM SCENERIES [J].
BOLTHAUSEN, E .
ANNALS OF PROBABILITY, 1989, 17 (01) :108-115
[7]  
Borodin A.N., 1979, Semin. LOMI Steklov., V85, P17
[8]  
BORODIN AN, 1979, DOKL AKAD NAUK SSSR+, V246, P786
[9]   Functional limit theorems for U-statistics indexed by a random walk [J].
Cabus, P ;
Guillotin-Plantard, N .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 101 (01) :143-160
[10]   NONPARAMETRIC CHANGE-POINT ESTIMATION [J].
CARLSTEIN, E .
ANNALS OF STATISTICS, 1988, 16 (01) :188-197