A combinatorial proof of Gotzmann's persistence theorem for monomial ideals

被引:4
作者
Murai, Satoshi [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Toyonaka, Osaka 560, Japan
基金
日本学术振兴会;
关键词
D O I
10.1016/j.ejc.2006.07.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Gotzmann proved the persistence for minimal growth of Hilbert functions of homogeneous ideals. His theorem is called Gotzmann's persistence theorem. In this paper, based on the combinatorics of binomial coefficients, a simple combinatorial proof of Gotzmann's persistence theorem in the special case of monomial ideals is given. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:322 / 333
页数:12
相关论文
共 50 条
[41]   A combinatorial proof of Andrews' partition functions related to Schur's partition theorem [J].
Yee, AJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (08) :2229-2235
[42]   An algorithm for the Quillen-Suslin Theorem for quotients of polynomial rings by monomial ideals [J].
Laubenbacher, R ;
Schlauch, K .
JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (05) :555-571
[43]   ON A CLASS OF MONOMIAL IDEALS GENERATED BY s-SEQUENCES [J].
La Barbiera, Monica .
MATHEMATICAL REPORTS, 2010, 12 (03) :201-216
[44]   COMBINATORIAL PROOF OF THEOREM OF FORD, RL AND FULKERSON,DR [J].
BIGALKE, A .
ARCHIV DER MATHEMATIK, 1978, 30 (01) :110-112
[45]   A COMBINATORIAL PROOF OF THE ALL MINORS MATRIX TREE THEOREM [J].
CHAIKEN, S .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (03) :319-329
[46]   Assignment testers: Towards a combinatorial proof of the PCP theorem [J].
Dinur, Irit ;
Reingold, Omer .
SIAM JOURNAL ON COMPUTING, 2006, 36 (04) :975-1024
[47]   A combinatorial proof of the skew K-saturation theorem [J].
Alexandersson, Per .
DISCRETE MATHEMATICS, 2015, 338 (01) :93-102
[48]   A COMBINATORIAL PROOF OF KURATOWSKIS THEOREM FOR CHARACTERIZING PLANAR GRAPHS [J].
VOLLMERH.W .
MATHEMATISCHE ANNALEN, 1969, 181 (04) :279-&
[49]   A Combinatorial Proof of a Schmidt Type Theorem of Andrews and Paule [J].
Ji, Kathy Q. .
ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01)
[50]   ITO'S THEOREM AND MONOMIAL BRAUER CHARACTERS [J].
Chen, Xiaoyou ;
Lewis, Mark L. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (03) :426-428