LINEAR WAVES IN THE KERR GEOMETRY: A MATHEMATICAL VOYAGE TO BLACK HOLE PHYSICS

被引:11
作者
Finster, Felix [1 ]
Kamran, Niky [2 ]
Smoller, Toel [3 ]
Yau, Shing-Tung [4 ]
机构
[1] Univ Regensburg, D-93040 Regensburg, Germany
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[4] Harvard Univ, Dept Math, Cambridge, MA 01238 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
TIME-PERIODIC SOLUTIONS; DIRAC PARTICLES; EQUATION; DECAY; SCHWARZSCHILD; PROOF; NONEXISTENCE; PERTURBATIONS; SCATTERING; STABILITY;
D O I
10.1090/S0273-0979-09-01258-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives a survey of wave dynamics in the Kerr space-time geometry, the mathematical model of a rotating black hole in equilibrium. After a brief introduction to the Kerr metric, we review the separability properties of linear wave equations for fields of general spin s = 0, 1/2, 1, 2, corresponding to scalar, Dirac, electromagnetic fields and linearized gravitational waves. We give results on the long-time dynamics of Dirac and scalar waves, including decay rates for massive Dirac fields. For scalar waves, we give a rigorous treatment of superradiance and describe rigorously a mechanism of energy extraction from a rotating black hole. Finally, we discuss the open problem of linear stability of the Kerr metric and present partial results.
引用
收藏
页码:635 / 659
页数:25
相关论文
共 55 条
[1]   Dynamics of scalar fields in the background of rotating black holes. II. A note on superradiance [J].
Andersson, N ;
Laguna, P ;
Papadopoulos, P .
PHYSICAL REVIEW D, 1998, 58 (08)
[2]  
[Anonymous], 1973, CAMBRIDGE MONOGRAPHS
[3]  
[Anonymous], 2012, Black hole physics: basic concepts and new developments
[4]  
[Anonymous], 1974, ERGEBNISSE MATH IHRE
[5]   DECAY OF THE MAXWELL FIELD ON THE SCHWARZSCHILD MANIFOLD [J].
Blue, Pieter .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2008, 5 (04) :807-856
[6]  
Bray H.L., 2002, Not. Am. Math. Soc., V49, P1372
[7]  
Bray HL, 2001, J DIFFER GEOM, V59, P177
[8]   AXISYMMETRIC BLACK HOLE HAS ONLY 2 DEGREES OF FREEDOM [J].
CARTER, B .
PHYSICAL REVIEW LETTERS, 1971, 26 (06) :331-+
[9]  
Chandrasekhar S., 1992, The Mathematical Theory of Black Holes
[10]  
CHANDRASEKHAR S., 1987, Truth and Beauty: Aesthetics and Motivations in Science, DOI DOI 10.1016/J.PALWOR.2007.07.002