Decomposing toroidal graphs into circuits and edges

被引:1
作者
Xu, BG
Wang, LS
机构
[1] Nanjiang Normal Univ, Sch Math & Comp Sci, Nanjing 210097, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
decomposition; circuit; torus;
D O I
10.1016/j.dam.2004.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Erdos et al. (Canad. J. Math. 18 (1966) 106-112) conjecture that there exists a constant d(ce) such that every simple graph on n vertices can be decomposed into at most d(ce)n circuits and edges. We consider toroidal graphs, where the graphs can be embedded on the torus, and give a polynomial time algorithm to decompose the edge set of an even toroidal graph on n vertices into at most (n + 3)/2 circuits. As a corollary, we get a polynomial time algorithm to decompose the edge set of a toroidal graph (not necessarily even) on n vertices into at most 3(n - 1)/2 circuits and edges. This settles the conjecture for toroidal graphs. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 8 条
  • [1] REPRESENTATION OF A GRAPH BY SET INTERSECTIONS
    ERDOS, P
    GOODMAN, AW
    POSA, L
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (01): : 106 - &
  • [2] EVEN S, 1979, GRAPH ALGORITMS COMP
  • [3] Hajo's' conjecture and projective graphs
    Fan, GH
    Xu, BG
    [J]. DISCRETE MATHEMATICS, 2002, 252 (1-3) : 91 - 101
  • [4] Favaron O., 1988, STUD SCI MATH HUNG, V23, P237
  • [5] Gibbons A., 1985, ALGORITHMIC GRAPH TH
  • [6] GRANVILLE A, 1987, P 16 MAN C NUM MATH, V56, P183
  • [7] Jiang T., 1984, J CHINA U SCI TECH, V14, P585
  • [8] HAJOS CONJECTURE AND SMALL CYCLE DOUBLE COVERS OF PLANAR GRAPHS
    SEYFFARTH, K
    [J]. DISCRETE MATHEMATICS, 1992, 101 (1-3) : 291 - 306