A manifold learning regularization approach to enhance 3D CT image-based lung nodule classification

被引:52
作者
Ren, Ying [1 ]
Tsai, Min-Yu [2 ,3 ,4 ]
Chen, Liyuan [3 ,4 ]
Wang, Jing [3 ,4 ]
Li, Shulong [3 ]
Liu, Yufei [5 ,6 ]
Jia, Xun [2 ,3 ,4 ]
Shen, Chenyang [2 ,3 ,4 ]
机构
[1] Heilongjiang Prov Number III Hosp, Dept Neurol, Beian 164000, Heilongjiang, Peoples R China
[2] Univ Texas Southwestern Med Ctr Dallas, Innovat Technol Radiotherapy Computat & Hardware, Dallas, TX 75235 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Med Artificial Intelligence & Automat MAIA Lab, Dallas, TX 75235 USA
[4] Univ Texas Southwestern Med Ctr Dallas, Dept Radiat Oncol, Dallas, TX 75235 USA
[5] Chongqing Univ, Minist Educ, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China
[6] Chongqing Univ, Coll Optoelect Engn, Ctr Intelligent Sensing Technol, Chongqing 400044, Peoples R China
关键词
Diagnosis; Lung nodule classification; Deep learning; Regularization; Manifold learning;
D O I
10.1007/s11548-019-02097-8
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose Diagnosis of lung cancer requires radiologists to review every lung nodule in CT images. Such a process can be very time-consuming, and the accuracy is affected by many factors, such as experience of radiologists and available diagnosis time. To address this problem, we proposed to develop a deep learning-based system to automatically classify benign and malignant lung nodules. Methods The proposed method automatically determines benignity or malignancy given the 3D CT image patch of a lung nodule to assist diagnosis process. Motivated by the fact that real structure among data is often embedded on a low-dimensional manifold, we developed a novel manifold regularized classification deep neural network (MRC-DNN) to perform classification directly based on the manifold representation of lung nodule images. The concise manifold representation revealing important data structure is expected to benefit the classification, while the manifold regularization enforces strong, but natural constraints on network training, preventing over-fitting. Results The proposed method achieves accurate manifold learning with reconstruction error of ~ 30 HU on real lung nodule CT image data. In addition, the classification accuracy on testing data is 0.90 with sensitivity of 0.81 and specificity of 0.95, which outperforms state-of-the-art deep learning methods. Conclusion The proposed MRC-DNN facilitates an accurate manifold learning approach for lung nodule classification based on 3D CT images. More importantly, MRC-DNN suggests a new and effective idea of enforcing regularization for network training, possessing the potential impact to a board range of applications.
引用
收藏
页码:287 / 295
页数:9
相关论文
共 31 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Lung nodule classification using deep Local-Global networks [J].
Al-Shabi, Mundher ;
Lan, Boon Leong ;
Chan, Wai Yee ;
Ng, Kwan-Hoong ;
Tan, Maxine .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (10) :1815-1819
[3]  
[Anonymous], ARXIV181012255
[4]  
[Anonymous], 2017, IEEE T BIG DATA
[5]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[6]   Automated lung nodule classification following automated nodule detection on CT: A serial approach [J].
Armato, SG ;
Altman, MB ;
Wilkie, J ;
Sone, S ;
Li, F ;
Doi, K ;
Roy, AS .
MEDICAL PHYSICS, 2003, 30 (06) :1188-1197
[7]   Large-Scale Machine Learning with Stochastic Gradient Descent [J].
Bottou, Leon .
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, :177-186
[8]  
Brosch T, 2013, LECT NOTES COMPUT SC, V8150, P633, DOI 10.1007/978-3-642-40763-5_78
[9]   Radiomic features analysis in computed tomography images of lung nodule classification [J].
Chen, Chia-Hung ;
Chang, Chih-Kun ;
Tu, Chih-Yen ;
Liao, Wei-Chih ;
Wu, Bing-Ru ;
Chou, Kuei-Ting ;
Chiou, Yu-Rou ;
Yang, Shih-Neng ;
Zhang, Geoffrey ;
Huang, Tzung-Chi .
PLOS ONE, 2018, 13 (02)
[10]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057