Decoupled Stabilized Crank-Nicolson LeapFrog method for time-dependent Navier-Stokes/Darcy model

被引:1
|
作者
Jia, Xiaofeng [1 ]
Feng, Hui [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金; 国家教育部博士点专项基金资助;
关键词
CNLF method; Navier-Stokes/Darcy model; Stabilized finite element method; Lowest equal-order finite element pair; FINITE-ELEMENT-METHOD; 2ND-ORDER; EFFICIENT; SURFACE; STEPS;
D O I
10.1016/j.cam.2021.113793
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a Stabilized Crank-Nicolson LeapFrog (SCNLF) method for the non-stationary Navier-Stokes/Darcy model is presented and analyzed. Initially, we decompose the coupling model into Navier-Stokes and Darcy equations. The spatial discretization by stabilized finite element method and the temporal discretization by CNLF method give a second-order partitioned method. Stability and error estimate of the numerical method are given. Finally, some numerical tests are presented to justify the theoretical analysis. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Decoupled characteristic stabilized finite element method for time-dependent Navier-Stokes/Darcy model
    Jia, Xiaofeng
    Li, Jichun
    Jia, Hongen
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (01) : 267 - 294
  • [2] Decoupled Crank-Nicolson LeapFrog method for the evolution Boussinesq equations
    Jia, Xiaofeng
    Feng, Hui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) : 15107 - 15122
  • [3] A decoupled stabilized finite element method for the time-dependent Navier-Stokes/Biot problem
    Guo, Liming
    Chen, Wenbin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (17) : 10749 - 10774
  • [4] TIME-DEPENDENT COUPLING OF NAVIER-STOKES AND DARCY FLOWS
    Cesmelioglu, Aycil
    Girault, Vivette
    Riviere, Beatrice
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (02): : 540 - 555
  • [5] A Modular Voigt Regularization of the Crank-Nicolson Finite Element Method for the Navier-Stokes Equations
    Rong, Y.
    Fiordilino, J. A.
    Shi, F.
    Cao, Y.
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
  • [6] A Modular Voigt Regularization of the Crank-Nicolson Finite Element Method for the Navier-Stokes Equations
    Y. Rong
    J. A. Fiordilino
    F. Shi
    Y. Cao
    Journal of Scientific Computing, 2022, 92
  • [7] Convergence of IPDG for coupled time-dependent Navier-Stokes and Darcy equations
    Chaabane, Nabil
    Girault, Vivette
    Puelz, Charles
    Riviere, Beatrice
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 324 : 25 - 48
  • [8] Decoupled modified characteristic finite element method for the time-dependent Navier-Stokes/Biot problem
    Guo, Liming
    Chen, Wenbin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (06) : 1684 - 1712
  • [9] Some multilevel decoupled algorithms for a mixed navier-stokes/darcy model
    Cai, Mingchao
    Huang, Peiqi
    Mu, Mo
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (01) : 115 - 145
  • [10] AN ARTIFICIAL COMPRESSIBILITY CRANK-NICOLSON LEAP-FROG METHOD FOR THE STOKES-DARCY MODEL AND APPLICATION IN ENSEMBLE SIMULATIONS
    Jiang, Nan
    Li, Ying
    Yang, Huanhuan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (01) : 401 - 428