On Scattered Convex Geometries

被引:0
|
作者
Adaricheva, Kira [1 ,2 ]
Pouzet, Maurice [3 ,4 ]
机构
[1] Yeshiva Univ, Dept Math Sci, 245 Lexington Ave, New York, NY 10016 USA
[2] Nazarbayev Univ, Sch Sci & Technol, Dept Math, 53 Kabanbay Batyr Ave, Astana 010000, Kazakhstan
[3] Univ Claude Bernard Lyon1, Univ Lyon, CNRS, Inst Camille Jordan,UMR 5208, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France
[4] Univ Calgary, Math & Stat Dept, Calgary, AB T2N 1N4, Canada
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 2017年 / 34卷 / 03期
关键词
Convex geometry; Algebraic lattice; Order-scattered poset; Topologically scattered lattice; Lattices of relatively convex sets; Multi-chains; Lattices of subsemilattices; Lattices of suborders; ORDERED SETS; LATTICES; CHAINS; POSETS;
D O I
10.1007/s11083-016-9413-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A convex geometry is a closure space satisfying the anti-exchange axiom. For several types of algebraic convex geometries we describe when the collection of closed sets is order scattered, in terms of obstructions to the semilattice of compact elements. In particular, a semilattice Omega(eta), that does not appear among minimal obstructions to order-scattered algebraic modular lattices, plays a prominent role in convex geometries case. The connection to topological scatteredness is established in convex geometries of relatively convex sets.
引用
收藏
页码:523 / 550
页数:28
相关论文
共 50 条
  • [41] Cooperative games on convex geometries with a coalition structure
    Meng, Fanyong
    Zhang, Qiang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2012, 25 (05) : 909 - 925
  • [42] Efficient knowledge assessment based on convex geometries
    Encheva, Sylvia
    Tumin, Sharil
    INTELLIGENT INFORMATION PROCESSING III, 2006, 228 : 187 - +
  • [43] GEODESIC FLOW OF NONSTRICTLY CONVEX HILBERT GEOMETRIES
    Bray, Harrison
    ANNALES DE L INSTITUT FOURIER, 2020, 70 (04) : 1563 - 1593
  • [44] COMBINATORIAL GEOMETRIES, CONVEX POLYHEDRA, AND SCHUBERT CELLS
    GELFAND, IM
    GORESKY, RM
    MACPHERSON, RD
    SERGANOVA, VV
    ADVANCES IN MATHEMATICS, 1987, 63 (03) : 301 - 316
  • [45] Subicular neurons encode concave and convex geometries
    Yanjun Sun
    Douglas A. Nitz
    Xiangmin Xu
    Lisa M. Giocomo
    Nature, 2024, 627 : 821 - 829
  • [46] Join-semidistributive lattices and convex geometries
    Adaricheva, KV
    Gorbunov, VA
    Tumanov, VI
    ADVANCES IN MATHEMATICS, 2003, 173 (01) : 1 - 49
  • [47] Realization of abstract convex geometries by point configurations
    Adaricheva, Kira
    Wild, Marcel
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) : 379 - 400
  • [48] Orders on Subsets Rationalised by Abstract Convex Geometries
    Walter Bossert
    Matthew J. Ryan
    Arkadii Slinko
    Order, 2009, 26 : 237 - 244
  • [49] Convex and Nonconvex Geometries of Symmetric Tensor Factorization
    Li, Qiuwei
    Tang, Gongguo
    2017 FIFTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2017, : 305 - 309
  • [50] The affine representation theorem for abstract convex geometries
    Kashiwabara, K
    Nakamura, M
    Okamoto, Y
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2005, 30 (02): : 129 - 144