On Scattered Convex Geometries

被引:0
|
作者
Adaricheva, Kira [1 ,2 ]
Pouzet, Maurice [3 ,4 ]
机构
[1] Yeshiva Univ, Dept Math Sci, 245 Lexington Ave, New York, NY 10016 USA
[2] Nazarbayev Univ, Sch Sci & Technol, Dept Math, 53 Kabanbay Batyr Ave, Astana 010000, Kazakhstan
[3] Univ Claude Bernard Lyon1, Univ Lyon, CNRS, Inst Camille Jordan,UMR 5208, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France
[4] Univ Calgary, Math & Stat Dept, Calgary, AB T2N 1N4, Canada
关键词
Convex geometry; Algebraic lattice; Order-scattered poset; Topologically scattered lattice; Lattices of relatively convex sets; Multi-chains; Lattices of subsemilattices; Lattices of suborders; ORDERED SETS; LATTICES; CHAINS; POSETS;
D O I
10.1007/s11083-016-9413-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A convex geometry is a closure space satisfying the anti-exchange axiom. For several types of algebraic convex geometries we describe when the collection of closed sets is order scattered, in terms of obstructions to the semilattice of compact elements. In particular, a semilattice Omega(eta), that does not appear among minimal obstructions to order-scattered algebraic modular lattices, plays a prominent role in convex geometries case. The connection to topological scatteredness is established in convex geometries of relatively convex sets.
引用
收藏
页码:523 / 550
页数:28
相关论文
共 50 条
  • [1] On Scattered Convex Geometries
    Kira Adaricheva
    Maurice Pouzet
    Order, 2017, 34 : 523 - 550
  • [2] Geometry of Convex Geometries
    Chalopin, Jeremie
    Chepoi, Victor
    Knauer, Kolja
    DISCRETE & COMPUTATIONAL GEOMETRY, 2025,
  • [3] Resolutions of Convex Geometries
    Cantone, Domenico
    Doignon, Jean-Paul
    Giarlotta, Alfio
    Watson, Stephen
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04): : 1 - 39
  • [4] Resolutions of convex geometries
    Cantone, Domenico
    Doignon, Jean-Paul
    Giarlotta, Alfio
    Watson, Stephen
    arXiv, 2021,
  • [5] COMBINATORIAL REPRESENTATION AND CONVEX DIMENSION OF CONVEX GEOMETRIES
    EDELMAN, PH
    SAKS, ME
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1988, 5 (01): : 23 - 32
  • [6] Embedding convex geometries and a bound on convex dimension
    Richter, Michael
    Rogers, Luke G.
    DISCRETE MATHEMATICS, 2017, 340 (05) : 1059 - 1063
  • [7] Convex dimension of locally planar convex geometries
    Morris, WD
    DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 25 (01) : 85 - 101
  • [8] Convex Dimension of Locally Planar Convex Geometries
    W. D. Morris
    Discrete & Computational Geometry, 2001, 25 : 85 - 101
  • [9] On the representation of finite convex geometries with convex sets
    Kincses J.
    Acta Scientiarum Mathematicarum, 2017, 83 (1-2): : 301 - 312
  • [10] NDF of Scattered Fields for Strip Geometries
    Akbari Sekehravani, Ehsan
    Leone, Giovanni
    Pierri, Rocco
    ELECTRONICS, 2021, 10 (02) : 1 - 18