Bi-selection in the high-dimensional additive hazards regression model

被引:1
作者
Liu, Li [1 ]
Su, Wen [2 ]
Zhao, Xingqiu [3 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
来源
ELECTRONIC JOURNAL OF STATISTICS | 2021年 / 15卷 / 01期
关键词
Additive hazards model; high dimension; composite penalty; local coordinate descent algorithm; oracle property; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; ADAPTIVE LASSO;
D O I
10.1214/21-EJS1799
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider a class of regularized regression under the additive hazards model with censored survival data and propose a novel approach to achieve simultaneous group selection, variable selection, and parameter estimation for high-dimensional censored data, by combining the composite penalty and the pseudoscore. We develop a local coordinate descent (LCD) algorithm for efficient computation and subsequently establish the theoretical properties for the proposed selection methods. As a result, the selectors possess both group selection oracle property and variable selection oracle property, and thus enable us to simultaneously identify important groups and important variables within selected groups with high probability. Simulation studies demonstrate that the proposed method and LCD algorithm perform well. A real data example is provided for illustration.
引用
收藏
页码:748 / 772
页数:25
相关论文
共 50 条
  • [21] Robust Information Criterion for Model Selection in Sparse High-Dimensional Linear Regression Models
    Gohain, Prakash Borpatra
    Jansson, Magnus
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 2251 - 2266
  • [22] High-Dimensional Regression with Unknown Variance
    Giraud, Christophe
    Huet, Sylvie
    Verzelen, Nicolas
    STATISTICAL SCIENCE, 2012, 27 (04) : 500 - 518
  • [23] A high-dimensional additive nonparametric model
    Wu, Frank C. Z.
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2024, 166
  • [24] LASSO Isotone for High-Dimensional Additive Isotonic Regression
    Fang, Zhou
    Meinshausen, Nicolai
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (01) : 72 - 91
  • [25] A Model-Averaging Approach for High-Dimensional Regression
    Ando, Tomohiro
    Li, Ker-Chau
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 254 - 265
  • [26] Markov Neighborhood Regression for High-Dimensional Inference
    Liang, Faming
    Xue, Jingnan
    Jia, Bochao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1200 - 1214
  • [27] Asymptotics of AIC, BIC and Cp model selection rules in high-dimensional regression
    Bai, Zhidong
    Choi, Kwok Pui
    Fujikoshi, Yasunori
    Hu, Jiang
    BERNOULLI, 2022, 28 (04) : 2375 - 2403
  • [28] An Improved Forward Regression Variable Selection Algorithm for High-Dimensional Linear Regression Models
    Xie, Yanxi
    Li, Yuewen
    Xia, Zhijie
    Yan, Ruixia
    IEEE ACCESS, 2020, 8 (08): : 129032 - 129042
  • [29] Nonparametric Additive Regression for High-Dimensional Group Testing Data
    Zuo, Xinlei
    Ding, Juan
    Zhang, Junjian
    Xiong, Wenjun
    MATHEMATICS, 2024, 12 (05)
  • [30] Variable Selection Diagnostics Measures for High-Dimensional Regression
    Nan, Ying
    Yang, Yuhong
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (03) : 636 - 656