Identification of Glioma from MR Images Using Convolutional Neural Network

被引:1
作者
Saxena, Nidhi [1 ]
Sharma, Rochan [1 ]
Joshi, Karishma [1 ]
Rana, Hukum Singh [1 ]
机构
[1] Univ Petr & Energy Studies, Dehra Dun, India
来源
PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2018, VOL 1 | 2019年 / 880卷
关键词
Glioma; Astrocytoma; Oligodendroglioma; Glioblastoma multiforme (GBM); MRI and convolutional neural network (CNN); TUMOR; CLASSIFICATION; SEGMENTATION;
D O I
10.1007/978-3-030-02686-8_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel approach of classifying the type of glioma using convolutional neural network (CNN) on 2D MR images. Glioma, most common type of malignant brain tumor, and can be classified according to the type of glial cells affected. The types of gliomas are, namely, actrocytoma, oligodendroglioma and glioblastoma multi-forme (GBM). Various image processing and pattern recognition techniques may be used for cancer identification and classification. Though in recent years deep learning has been proved to be efficient in computer aided diagnosis of diseases. Convolutional Neural Networks, a type of deep neural network which is generally used for classification of images, contains multiple sets of conv-pool layers for feature extraction, followed by fully-connected (FC) layers that make use of extracted features for classification.
引用
收藏
页码:589 / 597
页数:9
相关论文
共 23 条
[1]  
[Anonymous], 2015, ARXIV PREPRINT ARXIV
[2]  
[Anonymous], 2 INT C MICR EL TEL
[3]  
[Anonymous], DATA REMBRANDT
[4]   Classification of High-Grade Glioma into Tumor and Nontumor Components Using Support Vector Machine [J].
Blumenthal, D. T. ;
Artzi, M. ;
Liberman, G. ;
Bokstein, F. ;
Aizenstein, O. ;
Ben Bashat, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2017, 38 (05) :908-914
[5]  
Choromanska A, 2015, JMLR WORKSH CONF PRO, V38, P192
[6]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[7]   Image Segmentation for Early Stage Brain Tumor Detection using Mathematical Morphological Reconstruction [J].
Devkota, B. ;
Alsadoon, Abeer ;
Prasad, P. W. C. ;
Singh, A. K. ;
Elchouemi, A. .
6TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS, 2018, 125 :115-123
[8]   Current trends in medical image registration and fusion [J].
El-Gamal, Fatma El-Zahraa Ahmed ;
Elmogy, Mohammed ;
Atwan, Ahmed .
EGYPTIAN INFORMATICS JOURNAL, 2016, 17 (01) :99-124
[9]  
Glorot X., 2010, P 13 INT C ART INT S, P249
[10]   An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation [J].
Hoseini, Farnaz ;
Shahbahrami, Asadollah ;
Bayat, Peyman .
JOURNAL OF DIGITAL IMAGING, 2018, 31 (05) :738-747