Water Detection in SWOT HR Images Based on Multiple Markov Random Fields

被引:6
|
作者
Lobry, Sylvain [1 ,2 ]
Denis, Loic [3 ]
Williams, Brent [4 ]
Fjortoft, Roger [5 ]
Tupin, Florence [1 ]
机构
[1] Inst Polytech Paris, Telecom Paris, LTCI, F-91128 Palaiseau, France
[2] Wageningen Univ, Lab GeoInformat Sci & Remote Sensing, NL-6708 PB Wageningen, Netherlands
[3] Univ Lyon, CNRS, UJM St Etienne, Inst Opt,Grad Sch,Lab Hubert Curien,UMR 5516, F-42023 St Etienne, France
[4] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[5] Ctr Natl Etud Spatiales, F-31401 Toulouse, France
关键词
Binary classification; interferometric synthetic aperture radar (InSAR); Markov random fields (MRFs); synthetic aperture radar (SAR); water detection; EDGE-DETECTION; SAR; CONTOURS;
D O I
10.1109/JSTARS.2019.2948788
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One of the main objectives of the surface water and ocean topography (SWOT) mission, scheduled for launch in 2021, is to measure inland water levels using synthetic aperture radar (SAR) interferometry. A key step toward this objective is to precisely detect water areas. In this article, we present a method to detect water in SWOT images. Water is detected based on the relative brightness of the water and nonwater surfaces. Water brightness varies throughout the swath because of system parameters (i.e., the antenna pattern), as well as the phenomenology such as wind speed and surface roughness. To handle the effects of brightness variability, we propose to model the problem with one Markov random field (MRF) on the binary classification map, and two other MRFs to regularize the estimation of the class parameters (i.e., the land and water background power images). Our experiments show that the proposed method is more robust to the expected variations in SWOT images than traditional approaches.
引用
收藏
页码:4315 / 4326
页数:12
相关论文
共 50 条
  • [21] Use of Markov Random Fields for automatic cloud/shadow detection on high resolution optical images
    Le Hegarat-Mascle, Sylvie
    Andre, Cyrille
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2009, 64 (04) : 351 - 366
  • [22] Spectral-Spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    Ulfarsson, Magnus Orn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05): : 2565 - 2574
  • [23] A labeling scheme based on Markov Random Fields and Gaussian mixture models for hyperspectral images
    Huang, Xiu-Qin
    Liao, Zhi-Wu
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 3619 - +
  • [24] Gauss Markov random field based small target detection in infrared images
    Wen, S
    Jian, L
    Wu, XJ
    INTERNATIONAL SYMPOSIUM ON MULTISPECTRAL IMAGE PROCESSING, 1998, 3545 : 378 - 381
  • [25] Human motion detection using Markov random fields
    Cao, Xiao-Qin
    Liu, Zhi-Qiang
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2010, 1 (03) : 211 - 220
  • [26] Vehicle Headlights Detection Using Markov Random Fields
    Zhang, Wei
    Wu, Q. M. Jonathan
    Wang, Guanghui
    COMPUTER VISION - ACCV 2009, PT I, 2010, 5994 : 169 - 179
  • [27] EFFICIENT INCORPORATION OF MARKOV RANDOM FIELDS IN CHANGE DETECTION
    Aanaes, H.
    Nielsen, A. A.
    Carstensen, J. M.
    Larsen, R.
    Ersboll, B.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1991 - +
  • [28] Joint detection and restoration of Markov temporal random fields
    Korennoj, A.V.
    Gorev, P.G.
    Egorov, S.A.
    Radiotekhnika, 1998, (03): : 68 - 72
  • [29] Human motion detection using Markov random fields
    Xiao-Qin Cao
    Zhi-Qiang Liu
    Journal of Ambient Intelligence and Humanized Computing, 2010, 1 : 211 - 220
  • [30] Quickest Detection of Gauss-Markov Random Fields
    Heydari, Javad
    Tajer, Ali
    Poor, H. Vincent
    2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 808 - 814