Morphology and degradation properties of PCL/HYAFF11® composite scaffolds with multi-scale degradation rate

被引:45
作者
Guarino, V. [1 ]
Lewandowska, M. [2 ]
Bil, M. [2 ]
Polak, B. [3 ]
Ambrosio, L. [1 ]
机构
[1] CNR Naples, Inst Composite & Biomed Mat, Naples, Italy
[2] Warsaw Univ Technol, Fac Mat Sci & Engn, PL-00661 Warsaw, Poland
[3] Warsaw Univ Technol, Fac Chem, PL-00661 Warsaw, Poland
关键词
Polymer-matrix composites (PMCs); Porosity/voids; Thermal properties; Filament winding; TISSUE; POLYCAPROLACTONE; POLY(EPSILON-CAPROLACTONE); IMPLANTS; CELLS; FIBER;
D O I
10.1016/j.compscitech.2010.06.015
中图分类号
TB33 [复合材料];
学科分类号
摘要
The analysis of scaffold degradation is a promising strategy for understanding the dynamic changes in texture and pore morphology which accompany polymer resorption, and for collecting same fundamental indicators regarding the potential fate of the scaffold in the biological environment. In this study, we investigate the morphology and degradation properties of three composite scaffolds based on poly(epsilon-caprolactone) (PCL) embedded with benzyl ester of hyaluronic acid (HYAFF11 (R)) phases, and, in turn, different reinforcement systems - i e., calcium phosphate particles or continuous poly(lactic acid) (PLA) fibres Scanning electron microscopy (SEM) and mu-tomography supported by digital image analysis enabled a not invasive investigation of the scaffold morphology, providing a quantitative assessment of porosity (which ranged from 63.1 to 82.8), pore sizes (which varied from 170.5 to 230.4 mu m) and pore interconnectivity. Thermal analyses (DSC and TGA) and Raman spectroscopy demonstrated the multi-scale degradation of the composite with highly tailoring degradation kinetics depending on the component material phases and scaffold architecture changes, due to their conditioning in simulated in vivo environment (i e, SBF solution) These results demonstrate that the judicious mixing of materials with faster (i e, HYAFF11) and slower (i e, PLA and PCL) degradation kinetics, different size and shape (le, domains, particles or long fibres), certainly concurs to design a smart composite scaffold with time-controlled degradation which can support the regeneration of a large variety of tissues, from the cartilage to the bone (C) 2010 Elsevier Ltd All rights reserved
引用
收藏
页码:1826 / 1837
页数:12
相关论文
共 47 条
[1]   Biocompatibility and biodegradation of intravitreal hyaluronan implants in rabbits [J].
Avitabile, T ;
Marano, F ;
Castiglione, F ;
Bucolo, C ;
Cro, M ;
Ambrosio, L ;
Ferrauto, C ;
Reibaldi, A .
BIOMATERIALS, 2001, 22 (03) :195-200
[2]   Semisynthetic resorbable materials from hyaluronan esterification [J].
Campoccia, D ;
Doherty, P ;
Radice, M ;
Brun, P ;
Abatangelo, G ;
Williams, DF .
BIOMATERIALS, 1998, 19 (23) :2101-2127
[3]   A tissue engineering approach to meniscus regeneration in a sheep model [J].
Chiari, C. ;
Koller, U. ;
Dorotka, R. ;
Eder, C. ;
Plasenzotti, R. ;
Lang, S. ;
Ambrosio, L. ;
Tognana, E. ;
Kon, E. ;
Salter, D. ;
Nehrer, S. .
OSTEOARTHRITIS AND CARTILAGE, 2006, 14 (10) :1056-1065
[4]   In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers [J].
Chouzouri, Georgia ;
Xanthos, Marino .
ACTA BIOMATERIALIA, 2007, 3 (05) :745-756
[5]   Human bone marrow stromal cells: In vitro expansion and differentiation for bone engineering [J].
Ciapetti, G. ;
Ambrosio, L. ;
Marletta, G. ;
Baldini, N. ;
Giunti, A. .
BIOMATERIALS, 2006, 27 (36) :6150-6160
[6]   Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery [J].
Coombes, AGA ;
Rizzi, SC ;
Williamson, M ;
Barralet, JE ;
Downes, S ;
Wallace, WA .
BIOMATERIALS, 2004, 25 (02) :315-325
[7]  
DARLING L, 2004, J BIOMED MATER RES B, V3, P70311
[8]   The influence of polymer blend composition on the degradation of polymer/hydroxyapatite biomaterials [J].
Dunn, AS ;
Campbell, PG ;
Marra, KG .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2001, 12 (08) :673-677
[9]  
GABELNICK HL, 1983, RAVEN PRESS, V2, P149
[10]  
GCLPFERICH A, 1996, Biomatenals, V17, P103