Multivariate initial sequence estimators in Markov chain Monte Carlo

被引:23
作者
Dai, Ning [1 ]
Jones, Galin L. [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
关键词
Markov chain Monte Carlo; Covariance matrix estimation; Central limit theorem; Metropolis-Hastings algorithm; Gibbs sampler; DISTRIBUTIONS;
D O I
10.1016/j.jmva.2017.05.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Markov chain Monte Carlo (MCMC) is a simulation method commonly used for estimating expectations with respect to a given distribution. We consider estimating the covariance matrix of the asymptotic multivariate normal distribution of a vector of sample means. Geyer (1992) developed a Monte Carlo error estimation method for estimating a univariate mean. We propose a novel multivariate version of Geyer's method that provides an asymptotically valid estimator for the covariance matrix and results in stable Monte Carlo estimates. The finite sample properties of the proposed method are investigated via simulation experiments. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:184 / 199
页数:16
相关论文
共 29 条
[1]  
[Anonymous], 2014, Matrix analysis
[2]   MtDNA variation predicts population size in humans and reveals a major southern Asian chapter in human prehistory [J].
Atkinson, Quentin D. ;
Gray, Russell D. ;
Drummond, Alexei J. .
MOLECULAR BIOLOGY AND EVOLUTION, 2008, 25 (02) :468-474
[3]  
CHAN KS, 1994, ANN STAT, V22, P1747, DOI 10.1214/aos/1176325754
[4]   Markov chain Monte Carlo estimation of quantiles [J].
Doss, Charles R. ;
Flegal, James M. ;
Jones, Galin L. ;
Neath, Ronald C. .
ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 :2448-2478
[5]   Estimation of Bayes Factors in a Class of Hierarchical Random Effects Models Using a Geometrically Ergodic MCMC Algorithm [J].
Doss, Hani ;
Hobert, James P. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (02) :295-312
[6]   Relaxed phylogenetics and dating with confidence [J].
Drummond, Alexei J. ;
Ho, Simon Y. W. ;
Phillips, Matthew J. ;
Rambaut, Andrew .
PLOS BIOLOGY, 2006, 4 (05) :699-710
[7]   Markov chain Monte Carlo: Can we trust the third significant figure? [J].
Flegal, James M. ;
Haran, Murali ;
Jones, Galin L. .
STATISTICAL SCIENCE, 2008, 23 (02) :250-260
[8]  
Flegal JM, 2011, CH CRC HANDB MOD STA, P175
[9]  
Fristedt B., 1996, A Modern Approach to Probability Theory
[10]  
Geyer CJ., 1992, STAT SCI, V7, P473, DOI [10.1214/ss/1177011137, DOI 10.1214/SS/1177011137]