Efficiency of Static Knowledge Bias in Monte-Carlo Tree Search

被引:7
|
作者
Ikeda, Kokolo [1 ]
Viennot, Simon [1 ]
机构
[1] Japan Adv Inst Sci & Technol, Nomi, Japan
来源
COMPUTERS AND GAMES, CG 2013 | 2014年 / 8427卷
关键词
D O I
10.1007/978-3-319-09165-5_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monte-Carlo methods are currently the best known algorithms for the game of Go. It is already shown that Monte-Carlo simulations based on a probability model containing static knowledge of the game are more efficient than random simulations. Some programs also use such probability models in the tree search policy to limit the search to a subset of the legal moves or to bias the search. However, this aspect is not so well documented. In this paper, we describe more precisely how static knowledge can be used to improve the tree search policy. We show experimentally the efficiency of the proposed method by a large number of games played against open source Go programs.
引用
收藏
页码:26 / 38
页数:13
相关论文
共 50 条
  • [1] Adding Expert Knowledge and Exploration in Monte-Carlo Tree Search
    Chaslot, Guillaume
    Fiter, Christophe
    Hoock, Jean-Baptiste
    Rimmel, Arpad
    Teytaud, Olivier
    ADVANCES IN COMPUTER GAMES, 2010, 6048 : 1 - +
  • [2] Monte-Carlo Tree Search for Logistics
    Edelkamp, Stefan
    Gath, Max
    Greulich, Christoph
    Humann, Malte
    Herzog, Otthein
    Lawo, Michael
    COMMERCIAL TRANSPORT, 2016, : 427 - 440
  • [3] Monte-Carlo Tree Search Solver
    Winands, Mark H. M.
    Bjornsson, Yngvi
    Saito, Jahn-Takeshi
    COMPUTERS AND GAMES, 2008, 5131 : 25 - +
  • [4] Parallel Monte-Carlo Tree Search
    Chaslot, Guillaume M. J. -B.
    Winands, Mark H. M.
    van den Herik, H. Jaap
    COMPUTERS AND GAMES, 2008, 5131 : 60 - +
  • [5] Monte-Carlo Tree Search with Tree Shape Control
    Marchenko, Oleksandr I.
    Marchenko, Oleksii O.
    2017 IEEE FIRST UKRAINE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (UKRCON), 2017, : 812 - 817
  • [6] Monte-Carlo Tree Search for Constrained POMDPs
    Lee, Jongmin
    Kim, Geon-Hyeong
    Poupart, Pascal
    Kim, Kee-Eung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [7] Monte-Carlo Tree Search: To MC or to DP?
    Feldman, Zohar
    Domshlak, Carmel
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 321 - 326
  • [8] Monte-Carlo Tree Search in Settlers of Catan
    Szita, Istvan
    Chaslot, Guillaume
    Spronck, Pieter
    ADVANCES IN COMPUTER GAMES, 2010, 6048 : 21 - +
  • [9] Monte-Carlo Tree Search for Policy Optimization
    Ma, Xiaobai
    Driggs-Campbell, Katherine
    Zhang, Zongzhang
    Kochenderfer, Mykel J.
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3116 - 3122
  • [10] Scalability and Parallelization of Monte-Carlo Tree Search
    Bourki, Amine
    Chaslot, Guillaume
    Coulm, Matthieu
    Danjean, Vincent
    Doghmen, Hassen
    Hoock, Jean-Baptiste
    Herault, Thomas
    Rimmel, Arpad
    Teytaud, Fabien
    Teytaud, Olivier
    Vayssiere, Paul
    Yu, Ziqin
    COMPUTERS AND GAMES, 2011, 6515 : 48 - 58