Adaptive Regularization of Some Inverse Problems in Image Analysis

被引:3
作者
Hong, Byung-Woo [1 ]
Koo, Ja-Keoung [2 ]
Burger, Martin [3 ]
Soatto, Stefano [4 ]
机构
[1] Chung Ang Univ, Comp Sci Dept, Seoul 06974, South Korea
[2] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[3] Friedrich Alexander Univ Erlangen Nuremberg, Dept Math, D-91054 Erlangen, Germany
[4] Univ Calif Los Angeles, Comp Sci Dept, Los Angeles, CA 90095 USA
基金
新加坡国家研究基金会;
关键词
Adaptive regularization; Huber-Huber model; convex optimization; ADMM; segmentation; optical flow; denoising; ILL-POSED PROBLEMS; SMOOTHING PARAMETER; L-CURVE; SEGMENTATION; RESTORATION; SELECTION; SPACE;
D O I
10.1109/TIP.2019.2960587
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an adaptive regularization scheme for optimizing composite energy functionals arising in image analysis problems. The scheme automatically trades off data fidelity and regularization depending on the current data fit during the iterative optimization, so that regularization is strongest initially, and wanes as data fidelity improves, with the weight of the regularizer being minimized at convergence. We also introduce a Huber loss function in both data fidelity and regularization terms, and present an efficient convex optimization algorithm based on the alternating direction method of multipliers (ADMM) using the equivalent relation between the Huber function and the proximal operator of the one-norm. We illustrate and validate our adaptive Huber-Huber model on synthetic and real images in segmentation, motion estimation, and denoising problems.
引用
收藏
页码:2507 / 2521
页数:15
相关论文
共 67 条
[1]  
[Anonymous], 2014, Convex Optimiza- tion
[2]  
[Anonymous], 2010, UCLA CAM REP, DOI DOI 10.1186/1471-2180-10-90
[3]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[4]   Constrained and SNR-based solutions for TV-Hilbert space image denoising [J].
Aujol, Jean-Francois ;
Gilboa, Guy .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 26 (1-2) :217-237
[5]   A Database and Evaluation Methodology for Optical Flow [J].
Baker, Simon ;
Scharstein, Daniel ;
Lewis, J. P. ;
Roth, Stefan ;
Black, Michael J. ;
Szeliski, Richard .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 92 (01) :1-31
[6]   PERFORMANCE OF OPTICAL-FLOW TECHNIQUES [J].
BARRON, JL ;
FLEET, DJ ;
BEAUCHEMIN, SS .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1994, 12 (01) :43-77
[7]  
Bearman A., 2016, P EUR C COMPUT VIS
[8]  
Blake A, 2004, LECT NOTES COMPUT SC, V3021, P428
[9]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[10]  
Bresson X., 2008, UCLA CAM REP, V8, P67