Blow-up with logarithmic nonlinearities

被引:5
作者
Ferreira, Raul
de Pablo, Arturo [1 ]
Rossi, Julio D.
机构
[1] Univ Carlos III Madrid, Dept Matemat, E-28911 Madrid, Spain
[2] Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain
[3] Univ Buenos Aires, Dept Matemat, FCEyN, RA-1428 Buenos Aires, DF, Argentina
关键词
blow-up; asymptotic behaviour; nonlinear boundary conditions;
D O I
10.1016/j.jde.2007.05.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition, [GRAPHICS] with p, q,lambda > 0. We describe in terms of p, q and lambda when the solution is global in time and when it blows up in finite time. For blow-up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behaviour close to the blow-up time, showing that a phenomenon of asymptotic simplification takes place. We finally study the appearance of extinction in finite time. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:196 / 215
页数:20
相关论文
共 18 条
[1]  
BIEWER DM, 1996, DISS SUMM MATH, V1, P105
[2]  
Chlebik M., 2000, BANACH CTR PUBL, V52, P61
[3]   The role of critical exponents in blow-up theorems: The sequel [J].
Deng, K ;
Levine, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 243 (01) :85-126
[4]   The balance between nonlinear inwards and outwards boundary flux for a nonlinear heat equation [J].
Ferreira, R ;
Quirós, F ;
Rossi, JD .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (01) :259-282
[5]   Classification of blow-up with nonlinear diffusion and localized reaction [J].
Ferreira, Raul ;
de Pablo, Arturo ;
Luis Vazquez, Juan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (01) :195-211
[6]  
FILA M, 1996, BANACH CTR PUBL, V33, P67
[7]   Blow-up for quasilinear heat equations described by means of nonlinear Hamilton-Jacobi equations [J].
Galaktionov, VA ;
Vazquez, JL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 127 (01) :1-40
[8]   On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary [J].
Galaktionov, VA ;
Levine, HA .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 94 :125-146
[9]   CHARACTERIZING BLOWUP USING SIMILARITY VARIABLES [J].
GIGA, Y ;
KOHN, RV .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (01) :1-40
[10]   THE PROFILE NEAR BLOWUP TIME FOR SOLUTION OF THE HEAT-EQUATION WITH A NONLINEAR BOUNDARY-CONDITION [J].
HU, B ;
YIN, HM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 346 (01) :117-135