Physics-informed deep neural networks for simulating S-shaped steel dampers

被引:12
|
作者
Hu, Yao [1 ,2 ,3 ]
Guo, Wei [1 ,2 ]
Long, Yan [1 ,2 ]
Li, Shu [1 ,2 ]
Xu, Zi'an [1 ,2 ]
机构
[1] Cent South Univ, Sch Civil Engn, Changsha 410075, Peoples R China
[2] Natl Engn Res Ctr High Speed Railway Construct Te, Changsha 410075, Peoples R China
[3] Univ Melbourne, Dept Infrastruct Engn, Parkville, Vic 3010, Australia
基金
中国国家自然科学基金;
关键词
S-shaped steel dampers; Hysteretic behaviors; physics-informed DNNs; RNNs; LSTMs; BOUC-WEN MODEL; PARAMETER-IDENTIFICATION;
D O I
10.1016/j.compstruc.2022.106798
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Numerical simulation that combines finite element methods and experimental data has been recognized as effective in modeling hysteretic behaviors and capturing the principle mechanical trend of passive energy dissipation devices. However, the seismic design and mechanical characteristics assessment for passive energy dissipation devices require a laborious effort and massive computational resources to tune mechanical-oriented parameters. Particularly, the potential risk of departure from the actual system is rising for the desirable seismic design of dampers due to the numerical model simplification and assumption. To eliminate the potential weakness of numerical models, this paper explores a surrogate model by implementing physics-informed deep neural networks (DNNs) to approximate hysteretic behaviors of Sshaped steel dampers. The proposed physics-informed DNNs mainly consists of recurrent neural networks (RNNs) and long short-term networks (LSTMs), which can encode the Bouc-Wen model into the direct graph and incorporate the effect of design-oriented geometry parameters. To validate the generality of the network, the optimization model was calibrated numerically and experimentally, respectively, which exhibits good performance in predicting nonlinear behaviors of different dampers with reasonable accuracy. The proposed physics-informed DNNs can be an alternative to relieve the laboriousness of the seismic design and mechanical characteristics assessment of passive energy dissipation devices. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Hybrid quantum physics-informed neural networks for simulating computational fluid dynamics in complex shapes
    Sedykh, Alexandr
    Podapaka, Maninadh
    Sagingalieva, Asel
    Pinto, Karan
    Pflitsch, Markus
    Melnikov, Alexey
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [32] Parallel Physics-Informed Neural Networks with Bidirectional Balance
    Huang, Yuhao
    Xu, Jiarong
    Fang, Shaomei
    Zhu, Zupeng
    Jiang, Linfeng
    Liang, Xiaoxin
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 23 - 30
  • [33] Tackling the curse of dimensionality with physics-informed neural networks
    Hu, Zheyuan
    Shukla, Khemraj
    Karniadakis, George Em
    Kawaguchi, Kenji
    NEURAL NETWORKS, 2024, 176
  • [34] Boussinesq equation solved by the physics-informed neural networks
    Ruozhou Gao
    Wei Hu
    Jinxi Fei
    Hongyu Wu
    Nonlinear Dynamics, 2023, 111 : 15279 - 15291
  • [35] Design of Turing Systems with Physics-Informed Neural Networks
    Kho, Jordon
    Koh, Winston
    Wong, Jian Cheng
    Chiu, Pao-Hsiung
    Ooi, Chin Chun
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1180 - 1186
  • [36] The application of physics-informed neural networks to hydrodynamic voltammetry
    Chen, Haotian
    Kaetelhoen, Enno
    Compton, Richard G.
    ANALYST, 2022, 147 (09) : 1881 - 1891
  • [37] Physics-Informed Neural Networks for Heat Transfer Problems
    Cai, Shengze
    Wang, Zhicheng
    Wang, Sifan
    Perdikaris, Paris
    Karniadakis, George E. M.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06):
  • [38] Physics-Informed Neural Networks for Cardiac Activation Mapping
    Costabal, Francisco Sahli
    Yang, Yibo
    Perdikaris, Paris
    Hurtado, Daniel E.
    Kuhl, Ellen
    FRONTIERS IN PHYSICS, 2020, 8
  • [39] PHYSICS-INFORMED NEURAL NETWORKS FOR MODELING LINEAR WAVES
    Sheikholeslami, Mohammad
    Salehi, Saeed
    Mao, Wengang
    Eslamdoost, Arash
    Nilsson, Hakan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 9, 2024,
  • [40] Physics-Informed Neural Networks with Group Contribution Methods
    Babaei, Mohammad Reza
    Stone, Ryan
    Knotts, Thomas Allen
    Hedengren, John
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (13) : 4163 - 4171