SOME GAP THEOREMS FOR GRADIENT RICCI SOLITONS

被引:15
作者
Fernandez-Lopez, Manuel [1 ]
Garcia-Rio, Eduardo [1 ]
机构
[1] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
关键词
Gradient Ricci soliton; Einstein manifold; gap theorem;
D O I
10.1142/S0129167X12500723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Necessary and sufficient conditions for a gradient Ricci soliton to be Einstein are given, showing that they can be expressed in terms of upper and lower bounds on the behavior of the Ricci tensor when evaluated on the gradient of the potential function of the soliton.
引用
收藏
页数:9
相关论文
共 19 条
[1]  
[Anonymous], 2010, RECENT ADV GEOMETRIC
[2]  
[Anonymous], 2006, Grad. Stud. Math
[3]   ON LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS [J].
Cao, Huai-Dong ;
Chen, Qiang .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) :2377-2391
[4]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[5]  
Chen BL, 2009, J DIFFER GEOM, V82, P363
[6]   EIGENVALUE COMPARISON THEOREMS AND ITS GEOMETRIC APPLICATIONS [J].
CHEN, SY .
MATHEMATISCHE ZEITSCHRIFT, 1975, 143 (03) :289-297
[7]  
Chow B., 2004, Mathematical Surveys and Monographs, V110
[8]   Ricci solitons: the equation point of view [J].
Eminenti, Manolo ;
La Nave, Gabriele ;
Mantegazza, Carlo .
MANUSCRIPTA MATHEMATICA, 2008, 127 (03) :345-367
[9]   A remark on compact Ricci solitons [J].
Fernandez-Lopez, M. ;
Garcia-Rio, E. .
MATHEMATISCHE ANNALEN, 2008, 340 (04) :893-896
[10]   Rigidity of shrinking Ricci solitons [J].
Fernandez-Lopez, Manuel ;
Garcia-Rio, Eduardo .
MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (1-2) :461-466