Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks

被引:0
|
作者
Fu, Yiwei [1 ]
Hu, Wei [1 ]
Tang, Maolin [2 ]
Yu, Rui [2 ]
Liu, Baisi [2 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
[2] State Grid Corp China, Southwest Branch, Chengdu 610041, Sichuan, Peoples R China
来源
2018 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC) | 2018年
基金
国家重点研发计划;
关键词
multi-step; wind power forecasting; deep learning; long short term memory network (LSTM); gated recurrent unit (GRU); MODE DECOMPOSITION; WAVELET TRANSFORM; SPEED;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The accuracy of wind power forecasting has a very important influence on the safe and stable operation of power system. However, wind power prediction is very difficult, especially under the environment of massive data. This paper presents a novel multi-step ahead wind power prediction model based on recurrent neural network (RNN) with long short-term memory (LSTM) unit or gated recurrent unit (GRU) to improve the accuracy. Firstly, an overall forecasting framework for wind power with diverse forms of optional hybrid models is proposed. Moreover, an innovative LSTM/GRU-based forecasting model is developed with a wind speed correction process using numerical weather prediction (NWP) data. Through the application of GRU network, the correction process can provide corrected wind speed at the predicted moment as an input of the forecasting model. Finally, the experimental results demonstrate the superiority of the proposed RNN approaches as compared to the ARIMA method and SVM method while the main distinctions between the LSTM and GRU network are also illustrated.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Multi-step Ahead Wind Forecasting Using Nonlinear Autoregressive Neural Networks
    Ahmed, Adil
    Khalid, Muhammad
    SUSTAINABILITY IN ENERGY AND BUILDINGS 2017, 2017, 134 : 192 - 204
  • [2] Multi-step ahead wind power forecasting based on dual-attention mechanism
    Aslam, Muhammad
    Kim, Jun-Sung
    Jung, Jaesung
    ENERGY REPORTS, 2023, 9 : 239 - 251
  • [3] Multi Step Ahead Forecasting of Wind Power by Different Class of Neural Networks
    Saroha, Sumit
    Aggarwal, S. K.
    2014 RECENT ADVANCES IN ENGINEERING AND COMPUTATIONAL SCIENCES (RAECS), 2014,
  • [4] Multi-step ahead wind power forecasting based on multi-feature wavelet decomposition and convolution-gated recurrent unit model
    Shringi, Shubham
    Saini, Lalit Mohan
    Aggarwal, Sanjeev Kumar
    ELECTRICAL ENGINEERING, 2025,
  • [5] Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks
    Sun, Shilin
    Liu, Yuekai
    Li, Qi
    Wang, Tianyang
    Chu, Fulei
    ENERGY CONVERSION AND MANAGEMENT, 2023, 283
  • [6] Multi-step ahead forecasting of wind vector for multiple wind turbines based on new deep learning model
    Zhang, Zhendong
    Dai, Huichao
    Jiang, Dingguo
    Yu, Yi
    Tian, Rui
    ENERGY, 2024, 304
  • [7] Optimizing multi-step wind power forecasting: Integrating advanced deep neural networks with stacking-based probabilistic learning
    Takara, Lucas de Azevedo
    Teixeira, Ana Clara
    Yazdanpanah, Hamed
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    APPLIED ENERGY, 2024, 369
  • [8] Multi-step Ahead Ultra-short Term Forecasting of Wind Power Based on ECBO-VMD-WKELM
    Li Q.
    Zhang X.
    Ma T.
    Ma T.
    Wang H.
    Yin H.
    Dianwang Jishu/Power System Technology, 2021, 45 (08): : 3070 - 3078
  • [9] Multi-step ahead wind power forecasting for Ireland using an ensemble of VMD-ELM models
    Gonzalez-Sopena, Juan Manuel
    Pakrashi, Vikram
    Ghosh, Bidisha
    2020 31ST IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2020, : 187 - 191
  • [10] Comparative models for multi-step ahead wind speed forecasting applied for expected wind turbine power output prediction
    Kenmoe, Germaine Djuidje
    Fotso, Hervice Romeo Fogno
    Kaze, Claude Vidal Aloyem
    WIND ENGINEERING, 2022, 46 (03) : 780 - 795