Minimum Distance Estimation for the Generalized Pareto Distribution

被引:11
作者
Chen, Piao [1 ]
Ye, Zhi-Sheng [1 ]
Zhao, Xingqiu [2 ]
机构
[1] Natl Univ Singapore, Ind & Syst Engn, Singapore, Singapore
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
关键词
Consistency; Extreme value; M-estimation; Peak over threshold; Regression; SPATIALLY VARYING COEFFICIENT; REGRESSION; MODELS; PERSPECTIVE;
D O I
10.1080/00401706.2016.1270857
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The generalized Pareto distribution (GPD) is widely used for extreme values over a threshold. Most existing methods for parameter estimation either perform unsatisfactorily when the shape parameter k is larger than 0.5, or they suffer from heavy computation as the sample size increases. In view of the fact that k > 0.5 is occasionally seen in numerous applications, including two illustrative examples used in this study, we remedy the deficiencies of existing methods by proposing two new estimators for the GPD parameters. The new estimators are inspired by the minimum distance estimation and the M-estimation in the linear regression. Through comprehensive simulation, the estimators are shown to perform well for all values of k under small and moderate sample sizes. They are comparable to the existing methods for k < 0.5 while perform much better for k > 0.5.
引用
收藏
页码:528 / 541
页数:14
相关论文
共 50 条
  • [31] Minimum distance estimation in linear regression with strong mixing errors
    Kim, Jiwoong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (06) : 1475 - 1494
  • [32] A regularization approach to the minimum distance estimation: application to structural macroeconomic estimation using IRFs
    Sokullu, Senay
    OXFORD ECONOMIC PAPERS-NEW SERIES, 2020, 72 (02): : 546 - 565
  • [33] On distance-type Gaussian estimation
    Castilla, Elena
    Zografos, Konstantinos
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 188
  • [34] The generalized inverse Weibull distribution
    de Gusmao, Felipe R. S.
    Ortega, Edwin M. M.
    Cordeiro, Gauss M.
    STATISTICAL PAPERS, 2011, 52 (03) : 591 - 619
  • [35] Robust estimation for longitudinal data based upon minimum Hellinger distance
    Kang, Joonsung
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (01) : 150 - 159
  • [36] Minimum profile Hellinger distance estimation for single-index models
    Ding, Bowei
    Karunamuni, Rohana J.
    Wu, Jingjing
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024,
  • [37] Minimum distance estimation for fractional Ornstein-Uhlenbeck type process
    Liu, Zaiming
    Song, Na
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [38] Minimum distance estimation for fractional Ornstein-Uhlenbeck type process
    Zaiming Liu
    Na Song
    Advances in Difference Equations, 2014
  • [39] Generalized pareto regression trees for extreme event analysis
    Farkas, Sebastien
    Heranval, Antoine
    Lopez, Olivier
    Thomas, Maud
    EXTREMES, 2024, 27 (03) : 437 - 477
  • [40] A Generalized Hyperbolic Distance Function for Benchmarking Performance: Estimation and Inference
    Wilson, Paul W.
    COMPUTATIONAL ECONOMICS, 2024, : 3077 - 3110