Multi-animal pose estimation, identification and tracking with DeepLabCut

被引:210
作者
Lauer, Jessy [1 ,2 ]
Zhou, Mu [1 ]
Ye, Shaokai [1 ]
Menegas, William [3 ,4 ]
Schneider, Steffen [1 ]
Nath, Tanmay [2 ]
Rahman, Mohammed Mostafizur [5 ,6 ]
Di Santo, Valentina [8 ,9 ]
Soberanes, Daniel [2 ]
Feng, Guoping [3 ,4 ]
Murthy, Venkatesh N. [5 ,6 ]
Lauder, George [8 ]
Dulac, Catherine [5 ,6 ,7 ]
Mathis, Mackenzie Weygandt [1 ,2 ]
Mathis, Alexander [1 ,2 ,5 ,6 ]
机构
[1] Swiss Fed Inst Technol EPFL, Brain Mind Inst, Sch Life Sci, Lausanne, Switzerland
[2] Harvard Univ, Rowland Inst Harvard, Cambridge, MA 02138 USA
[3] MIT, Dept Brain & Cognit Sci, E25-618, Cambridge, MA 02139 USA
[4] MIT, McGovern Inst Brain Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Harvard Univ, Dept Biol Mol, Cambridge, MA 02138 USA
[6] Harvard Univ, Ctr Brain Sci, Cambridge, MA 02138 USA
[7] Howard Hughes Med Inst HHMI, Chevy Chase, MD USA
[8] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[9] Stockholm Univ, Dept Zool, Stockholm, Sweden
关键词
D O I
10.1038/s41592-022-01443-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Estimating the pose of multiple animals is a challenging computer vision problem: frequent interactions cause occlusions and complicate the association of detected keypoints to the correct individuals, as well as having highly similar looking animals that interact more closely than in typical multi-human scenarios. To take up this challenge, we build on DeepLabCut, an open-source pose estimation toolbox, and provide high-performance animal assembly and tracking-features required for multi-animal scenarios. Furthermore, we integrate the ability to predict an animal's identity to assist tracking (in case of occlusions). We illustrate the power of this framework with four datasets varying in complexity, which we release to serve as a benchmark for future algorithm development. DeepLabCut is extended to enable multi-animal pose estimation, animal identification and tracking, thereby enabling the analysis of social behaviors.
引用
收藏
页码:496 / 504
页数:9
相关论文
共 57 条
  • [1] Ahuja R.K., 1993, Network flows, DOI DOI 10.21236/ADA594171
  • [2] [Anonymous], 2018, P AS C COMP VIS
  • [3] Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics
    Bernardin, Keni
    Stiefelhagen, Rainer
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2008, 2008 (1)
  • [4] Bertozzi M, 2004, 2004 IEEE INTELLIGENT VEHICLES SYMPOSIUM, P584
  • [5] Bewley A, 2016, IEEE IMAGE PROC, P3464, DOI 10.1109/ICIP.2016.7533003
  • [6] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
    Cao, Zhe
    Simon, Tomas
    Wei, Shih-En
    Sheikh, Yaser
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1302 - 1310
  • [7] Chen Z, 2020, BIORXIV, DOI DOI 10.1101/2020.12.04.405159
  • [8] HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation
    Cheng, Bowen
    Xiao, Bin
    Wang, Jingdong
    Shi, Honghui
    Huang, Thomas S.
    Zhang, Lei
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 5385 - 5394
  • [9] Claudi F., 2020, ZENODO, DOI [10.5281/zenodo.3925997, DOI 10.5281/ZENODO.3925997]
  • [10] Computational Neuroethology: A Call to Action
    Datta, Sandeep Robert
    Anderson, David J.
    Branson, Kristin
    Perona, Pietro
    Leifer, Andrew
    [J]. NEURON, 2019, 104 (01) : 11 - 24