Multilevel Thresholding Based Segmentation and Feature Extraction for Pulmonary Nodule Detection

被引:36
作者
John, Jibi [1 ]
Mini, M. G. [2 ]
机构
[1] Model Engn Coll, Kochi 682021, Kerala, India
[2] Coll Engn, Cherthala 688541, Kerala, India
来源
INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING, SCIENCE AND TECHNOLOGY (ICETEST - 2015) | 2016年 / 24卷
关键词
Computed Tomography(CT) scans; Lung Cancer; Medical images; Multilevel thresholding; Segmentation; Pulmonary Nodule Detection; LUNG SEGMENTATION; CT;
D O I
10.1016/j.protcy.2016.05.209
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The identification of pulmonary nodules in humans has always been a vexing problem in the field of medical electronics. In this paper, an approach is proposed for pulmonary nodule segmentation and feature extraction using multilevel thresholding. The suitably extracted features can go a long way in the efficient detection of pulmonary nodules, which in turn can improve the chances for successful classification of nodules. The proposed segmentation with three level thresholding along with the features extracted can be incorporated to any suitable classification architecture to detect pulmonary nodules with better accuracy. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:957 / 963
页数:7
相关论文
共 12 条
[1]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[2]   Automated lung segmentation for thoracic CT: Impact on computer-aided diagnosis [J].
Armato, SG ;
Sensakovic, WF .
ACADEMIC RADIOLOGY, 2004, 11 (09) :1011-1021
[3]   Computer-aided detection and analysis of pulmonary nodule from CT images: A survey [J].
Dhara, Ashis Kumar ;
Mukhopadhyay, Sudipta ;
Khandelwal, Niranjan .
IETE TECHNICAL REVIEW, 2012, 29 (04) :265-275
[4]   Methodology for automatic detection of lung nodules in computerized tomography images [J].
Ferreira da Silva Sousa, Jaao Rodrigo ;
Silva, Aristofanes Correa ;
de Paiva, Anselmo Cardoso ;
Nunes, Rodolfo Acatauassu .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2010, 98 (01) :1-14
[5]   Pulmonary Nodules: Detection, Assessment, and CAD [J].
Girvin, Francis ;
Ko, Jane P. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2008, 191 (04) :1057-1069
[6]  
Homma Noriyasu, 2009, WSEAS Transactions on Information Science and Applications, V6, P746
[7]   Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images [J].
Hu, SY ;
Hoffman, EA ;
Reinhardt, JM .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (06) :490-498
[8]  
Reeves AP, 2009, ANN INT C IEEE ENG M
[9]   Automated 3-D Segmentation of Lungs With Lung Cancer in CT Data Using a Novel Robust Active Shape Model Approach [J].
Sun, Shanhui ;
Bauer, Christian ;
Beichel, Reinhard .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (02) :449-460
[10]   Automatic Segmentation of Pulmonary Segments From Volumetric Chest CT Scans [J].
van Rikxoort, Eva M. ;
de Hoop, Bartjan ;
van de Vorst, Saskia ;
Prokop, Mathias ;
van Ginneken, Brain .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (04) :621-630