Simulation of crack propagation in thermal barrier coatings with friction

被引:17
作者
Baeker, Martin [1 ]
Roesier, Joachim [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Werkstoffe, D-38106 Braunschweig, Germany
关键词
Finite element method; Crack propagation; Energy release; Interface; Thermal barrier coatings; MECHANISMS; STRESSES; SYSTEMS;
D O I
10.1016/j.commatsci.2011.01.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal barrier coatings, frequently used in turbine blades, comprise a corrosion-protecting bond coat, a ceramic top coat and a growing oxide layer in between. Failure mechanisms of these coating systems are still not satisfactorily understood. In this paper, crack initiation in thermal barrier coatings is studied with two-dimensional finite element simulations. It is assumed that the crack direction of a propagating crack is determined by a maximum energy release rate. Trial cracks are used to find the optimum propagation direction. It is shown that radial stresses near the peak position of the rough interface are compressive so that cracks propagating parallel to the interface are loaded mainly in mode II. Friction on the crack surface can be easily taken into account with the trial crack method. It is shown that cracks tend to kink away from the interface and that this tendency is more pronounced when friction is present. The influence of creep on the energy release rate is also studied. Creep relaxation strongly reduces the stresses and the energy release rates and can be approximately accounted for by a simple estimate. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:236 / 239
页数:4
相关论文
共 13 条
[1]  
[Anonymous], 1989, Numerical recipes in Fortran: the art of scientific computing
[2]   Finite element crack propagation calculation using trial cracks [J].
Baeker, Martin .
COMPUTATIONAL MATERIALS SCIENCE, 2008, 43 (01) :179-183
[3]   Simulation of crack propagation in mixed mode and at bimaterial interfaces using trial cracks [J].
Baeker, Martin .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (03) :680-683
[4]   A parametric study of the stress state of thermal barrier coatings Part II:: cooling stresses [J].
Bäker, M ;
Rösler, J ;
Heinze, G .
ACTA MATERIALIA, 2005, 53 (02) :469-476
[5]  
*BASS SYST, ABAQUS VERS 6 7 SIM
[6]   Thermal/residual stress in an electron beam physical vapor deposited thermal barrier coating system [J].
Cheng, J ;
Jordan, EH ;
Barber, B ;
Gell, M .
ACTA MATERIALIA, 1998, 46 (16) :5839-5850
[7]   Modeling oxidation induced stresses in thermal barrier coatings [J].
Freborg, AM ;
Ferguson, BL ;
Brindley, WJ ;
Petrus, GJ .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1998, 245 (02) :182-190
[8]   Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling [J].
He, MY ;
Hutchinson, JW ;
Evans, AG .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 345 (1-2) :172-178
[9]   A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems [J].
Karlsson, AM ;
Evans, G .
ACTA MATERIALIA, 2001, 49 (10) :1793-1804
[10]   Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings [J].
Rabiei, A ;
Evans, AG .
ACTA MATERIALIA, 2000, 48 (15) :3963-3976