Non-existence criteria for solutions of the Lane-Emden-Fowler system

被引:3
作者
Covei, Dragos-Patru [1 ,2 ]
机构
[1] Constantin Brancusi Univ Targu Jiu, Targu Jiu, Gorj, Romania
[2] W Univ Timisoara, Timisoara 300223, Timis, Romania
关键词
Non-existence; Lane-Emden-Fowler system;
D O I
10.1016/j.aml.2011.09.069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of a simple proof we show that the system -Delta u(i) = P(i)(vertical bar x vertical bar)f(i)(u(i+1)) and - Delta u(d) = P(d)(vertical bar x vertical bar f(d)(u(1)) for i = (1, d - 1) over bar on R(N), where N > 2, f(i) (i= (1,d) over bar): (0, infinity) -> (0, infinity) are continuous functions bounded in a neighborhood at infinity such that lim(si SE arrow 0)f(i i=(1,d) over bar)(s(i)) = + infinity and p(ii=(1,d) over bar) are positive radial functions which are continuous on R(N), has no positive radial solutions that decay to zero at infinity provided integral(infinity)(0) r Sigma(d)(i=1) p(i)(r)dr = infinity with r := vertical bar x vertical bar. Moreover, a non-existence result for the case N = 2 is obtained. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:610 / 613
页数:4
相关论文
共 14 条
  • [1] [Anonymous], 1931, Q. J. Math, DOI [10.1093/qmath/os-2.1.259, DOI 10.1093/QMATH/OS-2.1.259]
  • [2] Chandrasekhar Chandrasekhar S S, NOBEL LECT
  • [3] Chandrasekhar S., 1957, An Introduction to the Study of Stellar Structure
  • [4] Nonexistence of positive entire solutions for a class of (p, q)-Laplacian elliptic systems
    Chen, Caisheng
    Shi, Lanfang
    Zhu, Shenglan
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (06) : 831 - 837
  • [5] A Lane-Emden-Fowler type problem with singular nonlinearity
    Covei, Dragos-Patru
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2009, 49 (02): : 325 - 338
  • [6] EMDEN JR, 1907, ANWENDUNG MECH WARME
  • [7] EMDEN JR, 1925, ENCY MATH WISSENSC 2, V6
  • [9] Lane-Emden systems with negative exponents
    Ghergu, Marius
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) : 3295 - 3318
  • [10] KAWANO N, 1984, HIROSHIMA MATH J, V14, P125