Fluorescent Aptamer Immobilization on Inverse Colloidal Crystals

被引:11
作者
Chiappini, Andrea [1 ,2 ]
Pasquardini, Laura [3 ,4 ]
Nodehi, Somayeh [5 ]
Armellini, Cristina [1 ,2 ]
Bazzanella, Nicola [6 ]
Lunelli, Lorenzo [3 ,7 ]
Pelli, Stefano [8 ,9 ]
Ferrari, Maurizio [1 ,2 ,9 ]
Pietralunga, Silvia M. [5 ]
机构
[1] CNR, IFN CSMFO Lab, Via Cascata 56-C, I-38123 Povo, Italy
[2] FBK CMM, Via Cascata 56-C, I-38123 Povo, Italy
[3] FBK, LaBSSAH, Via Sommar 18, I-38123 Povo, Italy
[4] Indivenire Srl, Via Alla Cascata 56-C, I-38123 Povo, Italy
[5] CNR, IFN Milano, Piazza Leonardo da Vinci 32, Milan, Italy
[6] Univ Trento, Phys Dept, Via Sommar 14, I-38123 Trento, Italy
[7] CNR, Inst Biophys, Via Sommar 18, I-38123 Povo, Italy
[8] CNR, IFAC, MiPLab, Via Madonna Piano 10, I-50019 Sesto Fiorentino, Italy
[9] Enrico Fermi Ctr, Piazza Viminale 1, I-00184 Rome, Italy
关键词
colloidal crystal; fluorescence; band gap; co-assembly; DNA-aptamers; FDTD simulations; PWE method; PHOTONIC CRYSTAL; OPAL FILMS; FABRICATION; BIOSENSORS;
D O I
10.3390/s18124326
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we described a versatile two steps approach for the realization of silica inverse opals functionalized with DNA-aptamers labelled with Cy3 fluorophore. The co-assembly method was successfully employed for the realization of high quality inverse silica opal, whilst the inverse network was functionalized via epoxy chemistry. Morphological and optical assessment revealed the presence of large ordered domains with a transmission band gap depth of 32%, after the functionalization procedure. Finite Difference Time-Domain (FDTD) simulations confirmed the high optical quality of the inverse opal realized. Photoluminescence measurements evidenced the effective immobilization of DNA-aptamer molecules labelled with Cy3 throughout the entire sample thickness. This assumption was verified by the inhibition of the fluorescence of Cy3 fluorophore tailoring the position of the photonic band gap of the inverse opal. The modification of the fluorescence could be justified by a variation in the density of states (DOS) calculated by the Plane Wave Expansion (PWE) method. Finally, the development of the aforementioned approach could be seen as proof of the concept experiment, suggesting that this type of system may act as a suitable platform for the realization of fluorescence-based bio-sensors.
引用
收藏
页数:13
相关论文
共 47 条
  • [1] Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres
    Blanco, A
    Chomski, E
    Grabtchak, S
    Ibisate, M
    John, S
    Leonard, SW
    Lopez, C
    Meseguer, F
    Miguez, H
    Mondia, JP
    Ozin, GA
    Toader, O
    van Driel, HM
    [J]. NATURE, 2000, 405 (6785) : 437 - 440
  • [2] Photonic band gap formation in certain self-organizing systems
    Busch, K
    John, S
    [J]. PHYSICAL REVIEW E, 1998, 58 (03): : 3896 - 3908
  • [3] In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity
    Cai, Zhongyu
    Xiong, Zhigang
    Lu, Xianmao
    Teng, Jinghua
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (02) : 545 - 553
  • [4] In Situ "Doping" Inverse Silica Opals with Size-Controllable Gold Nanoparticles for Refractive Index Sensing
    Cai, Zhongyu
    Liu, Yan Jun
    Lu, Xianmao
    Teng, Jinghua
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (18) : 9440 - 9445
  • [5] An improved convective self-assembly method for the fabrication of binary colloidal crystals and inverse structures
    Cai, Zhongyu
    Teng, Jinghua
    Wan, Yong
    Zhao, X. S.
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 380 : 42 - 50
  • [6] Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone
    Chang, Hojun
    Min, Kyungtaek
    Lee, Myungjae
    Kang, Minsu
    Park, Yeonsang
    Cho, Kyung-Sang
    Roh, Young-Geun
    Hwang, Sung Woo
    Jeon, Heonsu
    [J]. NANOSCALE, 2016, 8 (12) : 6571 - 6576
  • [7] Solvent sensitive polymer composite structures
    Chiappini, A.
    Armellini, C.
    Carpentiero, A.
    Minati, L.
    Righini, G. C.
    Ferrari, M.
    [J]. OPTICAL MATERIALS, 2013, 36 (01) : 130 - 134
  • [8] An alternative method to obtain direct opal photonic crystal structures
    Chiappini, A.
    Armellini, C.
    Chiasera, A.
    Ferrari, M.
    Fortes, L.
    Goncalves, M. Clara
    Guider, R.
    Jestin, Y.
    Retoux, R.
    Conti, G. Nunzi
    Pelli, S.
    Almeida, Rui M.
    Righini, G. C.
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2009, 355 (18-21) : 1167 - 1170
  • [9] Photonic Crystal Surfaces as a General Purpose Platform for Label-Free and Fluorescent Assays
    Cunningham, Brian T.
    [J]. JALA, 2010, 15 (02): : 120 - 135
  • [10] Enhanced fluorescence detection of miRNA-16 on a photonic crystal
    Frascella, F.
    Ricciardi, S.
    Pasquardini, L.
    Potrich, C.
    Angelini, A.
    Chiado, A.
    Pederzolli, C.
    De Leo, N.
    Rivolo, P.
    Pirri, C. F.
    Descrovi, E.
    [J]. ANALYST, 2015, 140 (16) : 5459 - 5463