Rudin-Keisler posets of complete Boolean algebras

被引:0
作者
Jipsen, P
Pinus, A
Rose, H
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Novosibirsk State Tech Univ, Dept Algebra & Math Log, Novosibirsk 630092, Russia
[3] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
关键词
Boolean algebra; partitions; Rudin-Keisler ordering;
D O I
10.1002/1521-3870(200111)47:4<447::AID-MALQ447>3.0.CO;2-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Rudin-Keisler ordering of ultrafilters is extended to complete Boolean algebras and characterised in terms of elementary embeddings of Boolean ultrapowers. The result is applied to show that the Rudin-Keisler poset of some atomless complete Boolean algebras is nontrivial.
引用
收藏
页码:447 / 454
页数:8
相关论文
共 5 条
[1]  
Blass Andreas Raphael, 1970, THESIS HARVARD U
[2]  
CHANG CC, 1977, MODEL THEORY
[3]   Partition complete Boolean algebras and almost compact cardinals [J].
Jipsen, P ;
Rose, H .
MATHEMATICAL LOGIC QUARTERLY, 1999, 45 (02) :241-255
[4]  
MONK J. D., 1989, Handbook of Boolean algebras, V1-3
[5]   Filtral powers of structures [J].
Ouwehand, P ;
Rose, H .
JOURNAL OF SYMBOLIC LOGIC, 1998, 63 (04) :1239-1254