MULTIDIMENSIONAL DEGENERATE KELLER-SEGEL SYSTEM WITH CRITICAL DIFFUSION EXPONENT 2n/(n+2)

被引:32
作者
Chen, Li [2 ]
Liu, Jian-Guo [3 ,4 ]
Wang, Jinhuan [1 ,2 ]
机构
[1] Liaoning Univ, Sch Math, Shenyang 110036, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
[4] Duke Univ, Dept Phys, Durham, NC 27708 USA
基金
中国博士后科学基金; 中国国家自然科学基金; 美国国家科学基金会;
关键词
chemotaxis; critical diffusion exponent; nonlocal aggregation; critical stationary solution; global existence; mass concentration; radially symmetric solution; TIME BLOW-UP; GLOBAL EXISTENCE; CRITICAL MASS; MODEL; AGGREGATION; EQUATIONS; BEHAVIOR;
D O I
10.1137/110839102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a degenerate diffusion Patlak-Keller-Segel system in n >= 3 dimension. The main difference between the current work and many other recent studies on the same model is that we study the diffusion exponent m = 2n/(n + 2), which is smaller than the usual exponent m* = 2 - 2/n used in other studies. With the exponent m = 2n/(n + 2), the associated free energy is conformal invariant, and there is a family of stationary solutions U-lambda,U-x0(x) = C(lambda/lambda(2)vertical bar vertical bar x x(0)vertical bar(2))(n+2/2) for all lambda > 0, x(0) is an element of R-n. For radially symmetric solutions, we prove that if the initial data are strictly below U-lambda,U-0(x) for some lambda, then the solution vanishes in L-loc(1) as t -> infinity; if the initial data are strictly above U-lambda,U-0(x) for some lambda, then the solution either blows up at a finite time or has a mass concentration at r = 0 as time goes to infinity. For general initial data, we prove that there is a global weak solution provided that the L-m norm of initial density is less than a universal constant, and the weak solution vanishes as time goes to infinity. We also prove a finite time blow-up of the solution if the L-m norm for initial data is larger than the L-m norm of U-lambda,U-x0 (x), which is constant independent of lambda and x(0), and the free energy of initial data is smaller than that of U-lambda,U-x0 (x).
引用
收藏
页码:1077 / 1102
页数:26
相关论文
共 34 条
  • [1] Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion
    Bedrossian, Jacob
    Rodriguez, Nancy
    Bertozzi, Andrea L.
    [J]. NONLINEARITY, 2011, 24 (06) : 1683 - 1714
  • [2] BLANCHET A., 2009, FINITE MASS SELF SIM
  • [3] Blanchet A, 2008, COMMUN PUR APPL MATH, V61, P1449, DOI 10.1002/cpa.20225
  • [4] Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model
    Blanchet, Adrien
    Carlen, Eric A.
    Carrillo, Jose A.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (05) : 2142 - 2230
  • [5] Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions
    Blanchet, Adrien
    Carrillo, Jose A.
    Laurencot, Philippe
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 35 (02) : 133 - 168
  • [6] ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH
    CAFFARELLI, LA
    GIDAS, B
    SPRUCK, J
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) : 271 - 297
  • [7] CALVEZ V., 2010, BLOW UP CONCENTRATIO
  • [8] Calvez V., 2007, CONT MATH, V429, P45
  • [9] Volume effects in the Keller-Segel model: energy estimates preventing blow-up
    Calvez, Vincent
    Carrillo, Jose A.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02): : 155 - 175
  • [10] A Note on the Subcritical Two Dimensional Keller-Segel System
    Carrillo, Jose A.
    Chen, Li
    Liu, Jian-Guo
    Wang, Jinhuan
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2012, 119 (01) : 43 - 55